..HR_many

Optimization of recurrence quantification analysis for detecting the presence of multiple sclerosis.
S. Carrubba, C. Frilot II & A.A. MARINO. J. Med. Biol. Eng. 39:806–815, 2019. [PDF]

Trigeminal neurons detect cellphone radiation: thermal or nonthermal is not the question.
A.A. MARINO, P.Y. Kim & C. Frilot II. Electromagn. Biol. Med. 36:123–131, 2016. [PDF]

Accurate identification of subjects with obstructive sleep apnea using recurrence analysis of the sleep EEG.
C. Frilot II, D.E. McCarty, P.Y. Kim & A.A. MARINO. Presentation. SLEEP 2015: 29th Annual Meeting, Associated Professional Sleep Societies. Seattle, WA, June 2015. [PDF]

Two group classification of patients with obstructive sleep apnea based on analysis of brain recurrence.
P.Y. Kim, D.E. McCarty, L. Wang, C. Frilot II, A.L. Chesson Jr. & A.A. MARINO. Clin. Neurophysiol. 125:1174–1181, 2014. [PDF]

Recurrence analysis of the EEG during sleep accurately identifies subjects with mental health symptoms.
D.E. McCarty, N.M. Punjabi, P.Y. Kim, C. Frilot II & A.A. MARINO. Psych. Res. 224:335–340, 2014. [PDF]

The EEG fingerprint of REM: analysis of brain recurrence (ABR) accurately identifies REM using a single EEG lead.
D.E. McCarty, P.Y. Kim, C. Frilot II & A.A. MARINO. Presentation. SLEEP 2014: 28th Annual Meeting, Associated Professional Sleep Societies. Minneapolis, MN, June 2014. [PDF]

EEG recurrence markers and sleep quality.
L. Wang, P.Y. Kim, D.E. McCarty, C. Frilot II, A.L. Chesson Jr., S. Carrubba & A.A. MARINO. J. Neurol. Sci. 331:26–30, 2013. [PDF]

Nocturnal hypoxemia biomarker predicts sleepiness in patients with severe obstructive sleep apnea.
A. Uysal, C. Liendo, D.E. McCarty, P.Y. Kim, C. Paxson, A.L. Chesson Jr. & A.A. MARINO. Sleep Breath. 18:77–84, 2013. [PDF]

Increased determinism in brain electrical activity occurs in association with multiple sclerosis.
S. Carrubba, A. Minagar, A.L. Chesson Jr., C. Frilot & A.A. MARINO. Neurol. Res. 34:286–290, 2012. [PDF]

EEG complexity is altered in patients with CPAP-induced REM rebound.
L. Wang, D.E. McCarty, S. Carrubba, A. Uysal, A.L. Chesson Jr. & A.A. MARINO. SLEEP 35 (Abstract Suppl.): A129: 2012. [PDF]

Electromagnetic hypersensitivity: evidence for a novel neurological syndrome.
D.E. McCarty, S. Carrubba, A.L. Chesson, Jr., C. Frilot II, E. Gonzalez-Toledo & A.A. MARINO. Int. J. Neurosci. 121:670–676, 2011. [PDF](Introduction, an MP3 audio file).

Numerical analysis of recurrence plots to detect effect of environmental-strength magnetic fields on human brain electrical activity.
S. Carrubba, C. Frilot II, A.L. Chesson Jr. & A.A. MARINO. Med. Eng. Phys. 32: 898–907, 2010. [PDF]

Simulated MR magnetic field induces steady-state changes in brain dynamics: implications for interpretation of functional MR studies.
A.A. MARINO, S. Carrubba, C. Frilot II, A.L. Chesson Jr. & E. Gonzalez-Toledo. Magn. Reson. Med. 64: 349–357, 2010. [PDF]

Multiple sclerosis impairs ability to detect abrupt appearance of a subliminal stimulus.
S. Carrubba, A. Minagar, E. Gonzalez Toledo, A.L. Chesson, C. Frilot II & A.A. MARINO. Neurolog. Res. 32: 297–302, 2010. [PDF]

Mobile-phone pulse triggers evoked potentials.
S. Carrubba, C. Frilot II, A.L. Chesson Jr. & A.A. MARINO. Neurosci. Lett. 469: 164–168, 2010. [PDF]

The electric field is a sufficient physical determinant of the human magnetic sense.
S. Carrubba, C. Frilot, II, F.X. Hart, A.L. Chesson, Jr. & A.A. MARINO. Int. J. Radiat. Biol. 85: 622–632, 2009. [PDF]

Evidence that transduction of electromagnetic field is mediated by a force receptor.
A.A. MARINO, S. Carrubba, C. Frilot & A.L. Chesson, Jr. Neurosci. Lett. 452: 119–123, 2009. [PDF]

Method for detection of changes in the EEG induced by the presence of sensory stimuli.
S. Carrubba, C. Frilot, A.L. Chesson, Jr. & A.A. MARINO. J. Neurosci. Meth. 173: 41–46, 2008. [PDF]

Magnetosensory evoked potentials: consistent nonlinear phenomena.
S. Carrubba, C. Frilot, A.L. Chesson, Jr., C.L. Webber, Jr., J.P. Zbilut & A.A. MARINO. Neurosci. Res. 60: 95–105, 2008. [PDF]

Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields.
S. Carrubba, C. Frilot, A.L. Chesson & A.A. MARINO. Neurosci. Lett. 417: 212–216, 2007. [PDF]

Evidence of a nonlinear human magnetic sense.
S. Carrubba, C. Frilot II, A.L. Chesson Jr. & A.A. MARINO. Neuroscience 144: 356–367, 2007. [PDF]

Effect of low-frequency magnetic fields on brain electrical activity in human subjects.
A.A. MARINO, E. Nilsen, A.L. Chesson Jr., & C. Frilot. Clin. Neurophysiol. 115: 1195–1201, 2004. [PDF]

Low-level EMFs are transduced like other stimuli.
A.A. MARINO, G.B. Bell & A. Chesson. J. Neurolog. Sci. 144: 99–106, 1996. [PDF]

Electrical potential measurements in human breast cancer and benign lesions.
A.A. MARINO, D.M. Morris, M.A. Schwalke, I.G. Iliev & S. Rogers. Tumor Biol. 15: 147–152, 1994. [PDF]

Frequency-specific responses in the human brain caused by electromagnetic fields.
G.B. Bell, A.A. MARINO & A.L. Chesson. J. Neurol. Sci. 123: 26–32, 1994. [PDF]

Frequency-specific blocking in the human brain caused by electromagnetic fields.
G.B. Bell, A.A. MARINO & Andrew L. Chesson. NeuroReport 5: 510–512, 1994. [PDF]

Alterations in brain electrical activity caused by magnetic fields: detecting the detection process.
G.B. Bell, A.A. MARINO & A.L. Chesson. Electroencephalog. Clin. Neurophysiol. 83: 389–397, 1992. [PDF]

Human sensitivity to weak magnetic fields.
G. Bell, A.A. MARINO, A. Chesson & F. Struve. Lancet 338: 1521–1522, 1991. [PDF]

Clinical experiences with low intensity direct current stimulation of bone growth.
R.O. Becker, J.A. Spadaro & A.A. MARINO. Clin. Orthop. Relat. Res. 124: 75–83, 1977. [PDF]