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Objectives: To show that EEG markers formed using the variable percent recurrence reliably quantified two re-
lated aspects of sleep quality, sleep depth and sleep fragmentation. As hypotheses, the depth marker would
increase and the fragmentation marker decrease in patients where improved sleep quality occurred when
assessed by polysomnography.
Methods: The patients (N = 20) had been diagnosed with obstructive sleep apnea during diagnostic
polysomnography (dPSG), and had exhibited increased REM sleep (clinical indication of improved sleep
quality) during subsequent polysomnography to titrate the pressure of a treatment device (cPSG). Percent
recurrence was computed second-by-second from the EEG; sleep-depth and sleep-stability markers were
obtained algorithmically. By assumption, the markers contained temporal information regarding the extent
of deterministic (non-random) brain activity. Marker means were compared between the dPSG and the
cPSG for NREM and REM sleep.
Results: Sleep depth was greater and sleep fragmentation was less during cPSG, as hypothesized (P b 0.05).
The effects occurred during NREM and REM sleep, but were greater during NREM sleep (P b 0.05). At least

one of the predicted changes occurred in 95% of the patients.
Conclusions: The factors generally regarded as responsible for subjective sleep quality were objectively quan-
tified on the basis of dynamical changes in the EEG.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Human sleep and associated events are assessed on the basis of
rules applied to simultaneously recorded physiological signals [1].
Three stages (N1, N2, N3) and particular arousal events (abrupt
changes) are identified from the electroencephalogram (EEG), and a
fourth stage (REM) is identified from the coordinated behavior of
several signals including the EEG. The N3 stage is commonly regarded
as deep sleep. The depth of sleep together with the rate of arousal
events are determinants of sleep quality [2]. Loss of sleep depth
and/or increases in arousal events produce non-restorative sleep,
and are associated with various sleep disorders including obstructive
sleep apnea (OSA).

Presentmethods for measuring the depth of sleep are problematical
[3–7]. Determining the intensity of stimuli needed towake a subject has
been used to quantify sleep depth [3,4], but thatmethod variably classi-
fied REM as the deepest level of sleep [5], intermittently deep [6], or as
similar in depth toN1andN2 sleep [6], dependingon how the threshold
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wasmeasured. Delta power is amarker for sleep depth during non-REM
(NREM) sleep [7], but no equivalent marker exists for REM sleep.
Similarly, additional refinement of scoring arousals is needed [8]. We
recently showed that a recurrence marker computed by algorithmic
analysis of the EEG stratified all sleep stages, increased progressively
with NREM sleep-stage depth (N1 b N2 b N3), and characterized
sleep fragmentation caused by arousal events [9].

REM rebound (an increase in percent of overnight sleep that is
staged as REM) occurs during recovery from chronic stress, including
restorative sleep following sleep deprivation [10] and initiation of
treatment for OSA using continuous positive airway pressure (CPAP)
[11–14]. CPAP-associated REM rebound (CARR) is generally accepted
to indicate deeper and less fragmented sleep [11–14]. We therefore
expected an increase in recurrence in CARR patients and a decrease in
the variability of the recurrence, compared with the corresponding
values determined prior to initiation of CPAP.

Our goal was to evaluate the capability of the EEG-based recur-
rence variable percent recurrence to quantify sleep depth and sleep
fragmentation. The first aim was to show that a recurrence depth
marker increased in patients who experienced CARR (increased
sleep depth). The second aim was to show in the same patients that
a recurrence fragmentation marker exhibited a decreased rate of
change (decreased sleep fragmentation).

http://dx.doi.org/10.1016/j.jns.2013.04.019
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2. Methods

2.1. Subjects

We reviewed consecutive records of patients who underwent
attended overnight diagnostic polysomnography (dPSG) that was pos-
itive for OSA (apnea–hypopnea index (AHI) ≥5 events/hr), and who
subsequently underwent overnight CPAP-titration polysomnography
(cPSG) during which CARR (clinical indicator of increased sleep depth
and improved sleep quality) was observed. CARR was defined as an in-
crease in REM as a percentage of total sleep time of at least 20%. This
thresholdwas higher than that used previously [11–14], but sufficiently
low to ensure that an adequate number of patients were available for
study after screening the database (>500 studies). Exclusion criteria in-
cluded b30 minutes of REM sleep in any study, significant medical
co-morbidities, current use of sleep-altering medications, and prior
treatment for OSA. The study group consisted of the first 20 consecutive
patients who met all the study criteria; the selected patients exhibited
quite severe OSA (Table 1). AlthoughCPAP treatmentmarkedly reduced
the AHI (clinical indicator of reduced sleep fragmentation), the patients
still exhibited OSA (Table 1). The PSGs were staged by consensus
between two sleep-medicine physicians, using standard rules [1],
resulting in the assignment of every 30-sec epoch of the PSGs into one
of five stages: REM, N1, N2, N3, or wakefulness after sleep onset
(WASO). For purposes of simplifying the subsequent analysis (see
below), the N1, N2, and N3 stages were combined into the NREM stage.

To estimate the recurrence values computed during wakefulness
from EEGs of healthy individuals, eyes-closed vigilant EEGs were
recorded from 20 clinically normal subjects. They were selected as
a representative normal sample (median age 34 years, half of each
gender), not as age and gender matches for the patients. The EEGs
were analyzed similarly to those from the patients (see below). All
experimental procedures were approved by the institutional review
board for human research.
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2.2. EEG measurements

PSGs (which included 6 EEGs) were recorded with commercial
equipment (Respironics, Alice 5, Murrysville, PA, USA), using stan-
dard digital specifications and electrode montage (O1, O2, C3, C4,
F3, F4, International 10–20 system) [15]. The EEGs were digitized at
500 Hz, and exported as CSV files for analysis.

Vigilant EEGs from normal subjects were recorded for 10 minutes
in a dark isolation chamber (assumed reasonably sufficient for esti-
mating normality) to mitigate the effect of irrelevant or random am-
bient stimuli. The electrode montage used (O1, O2, C3, C4, P3, P4,
referenced to linked ears) was chosen in accordance with the stan-
dard practice for recording EEGs in our research laboratory. The
EEGs were digitized at 500 Hz, and stored as ASCII files for analysis.
The recurrence values were averaged over all electrodes and all sub-
jects to provide estimates of recurrence and its variability in normal
awake subjects (the cognitive state where the variables have their
extreme values).
Table 1
Characteristics of the sleep patients. BMI, body mass index. AHI, apnea–
hypopnea index. dPSG, diagnostic polysomnogram. cPSG, CPAP
polysomnogram. (Mean ± SE).

Number of patients 20

Age (years) 46.5 ± 3.1
BMI (kg/m2) 47.4 ± 2.0
Male/Female (%) 67/33
AHI (events/hr) 100.6 ± 6.1 (dPSG)

16.1 ± 3.1 (cPSG)
2.3. Recurrence analysis

All EEGs were digitally filtered to pass 0.5–35 Hz and evaluated
using recurrence analysis in a standard numerical computing environ-
ment (Matlab, Mathworks, Natick, MA, USA). The signal-processing
techniques were developed to study nonlinear physical systems and
subsequently extended to physiological signals [16,17], including the
vigilant and sleep EEGs [9,18–20]. Briefly, at time t a 5-component
vectorwas formed that consisted of the EEG amplitude at t and four ear-
lier times identified by four successive lags of five points (10 msec). The
next vector in the sequence was at t + 10 msec and consisted of the
EEG at that time, t, and the values 10, 20, and 30 msec earlier. The se-
quence of all such vectors obtainable from1 sec of the EEG (480 vectors,
given our choices of sampling rate, vector dimension, and number of lag
points) formed a path (in a mathematical space) that is conventionally
interpreted to be a result of the deterministic (non-random) activity in
the EEG. By hypothesis, the EEG determinism increased and its variabil-
ity decreased as a consequence of CPAP treatment.

The determinism was quantified second by second using the re-
currence variable percent recurrence (r), defined as the percent of
the 480 vectors in the path that were near other vectors [17]. The
Euclidean norm was used for measuring distance, and vectors were
identified as near if they were within 15% of the distance between
the two vectors that were furthest apart. These choices (and those
for dimension and lag) were previously found to be useful for quanti-
fying deterministic activity in the EEG [9,18,19].

Approximately 60 sec × 60 min × 8 hrs = 28,800 values of r were
computed for a typical eight-hour overnight EEG, resulting in the time
series r(t). For the vigilant subjects, 60 sec × 10 min × 6 derivations ×
20 subjects = 72,000 r values were averaged to obtain the mean value
of recurrence in normal subjects during wakefulness (r).
EEG
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Fig. 1. Experimental design. a) Computation of recurrence markers from overnight
sleep EEGs. b) Computation of recurrence markers from vigilant EEGs. c) Statistical
design.



28 L. Wang et al. / Journal of the Neurological Sciences 331 (2013) 26–30
2.4. Experimental design

The macroarchitecture of recurrence in the sleep EEG exhibits
ultradian cycles that vary between minimum values of r, which
occur during WASO, and maximum values which occur during N3
sleep [9]. To permit direct intra- and inter-subject comparisons, r(t)
from each PSG was normalized by the mean r of WASO (rWASO) and
multiplied by 100 to permit the normalized value (D(t)) to be
expressed as a percent (labeled recurrence-based sleep depth),
D(t) = 100r(t)/rWASO. The average value of D(t) was computed for
the entire overnight sleep study (D), and separately for NREM and
REM stages (DNREM, DREM) (Fig. 1a).

A recurrence marker for fragmentation in sleep depth was created
by generalizing the conventional definition of EEG arousals [1]. The
ratio of the mean of r(t) for 3 sec (one value per second) to the mean
of r(t) for the preceding 10 sec (ten values) was determined, and the
process was repeated using successive steps of 3 sec, resulting in a
time series of approximately 28,800 ratios for an overnight EEG.When-
ever the ratio increased by more than 100% the change was counted
as an arousal, and the hourly rate of arousals, termed the generalized
arousal index (GAI) was determined for WASO, NREM and REM sleep
separately, and for total sleep (all epochs in the PSG between lights
out and lights on except for WASO epochs). The latter three values
were normalized by the value for WASO and expressed as a percent
Fig. 2. Recurrence (r(t)) in the EEG (C3) from an overnight sleep study (color-coded by sta
tively. The corresponding hypnograms are shown.
(GAINREM, GAIREM, GAITS) (Fig. 1a). Preliminary studies showed that
the results for D and GAI did not depend on the electrode derivation.
Consequently, only results from C3 were presented here.

Both r and GAI during wakefulness were estimated from the vigi-
lant EEGs (Fig. 1b).

The paired t testwas used to comparemeans of the depth and arous-
al markers between the dPSGs and cPSGs (Fig. 1c). The unpaired t test
was used to compare r and GAITS from the vigilant subjects with the
corresponding values from WASO in the PSGs. Tolerances shown
for means were standard errors. For clarity of presentation, the over-
night r(t) was smoothed using a cubic 59-point Savitzky-Golay filter
(Sgolayfilt, Matlab).

3. Results

The second-by-second variation of brain electrical activity as reflected
in r(t) differed profoundly as a consequence of treatment with CPAP
(Fig. 2). In the dPSG, r(t) typically varied over its entire range regardless
of sleep stage (Fig. 2a). In the cPSG, however, r(t) was bounded with the
highest mean value occurring in N3, lowest in wake, and intermediate in
N2 and REM (Fig. 2b). The hypnograms in the dPSGs and cPSGs effective-
ly were averages of the temporal changes in r(t).

After normalizing r(t) using the patient's r fromWASO (to control
for intra- and inter-patient variability in recurrence), mean depth of
ge) of a patient who exhibited REM rebound: a), b) diagnostic and CPAP PSGs, respec-
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total sleep (all sleep stages) increased significantly in the cPSGs, com-
pared with the dPSGs, as hypothesized, 164 ± 10%, 112 ± 5%, re-
spectively (P b 0.05) (Fig. 3). Increases occurred in both NREM
(44%) and REM (19%) sleep; the increase during NREM was greater
than the increase during REM (P b 0.05). WASO was higher in the
dPSGs and cPSGs, compared with the corresponding value in the
EEGs of clinically-normal awake subjects (P b 0.05) (Fig. 3).

The normalized GAI during total sleep was significantly reduced in
the cPSG study, 65 ± 14%, compared with 37 ± 6% in the dPSG
(P b 0.05) (Fig. 4). The effect occurred during both NREM and REM
sleep. GAI duringWASO was higher in both the dPSGs and cPSGs, com-
pared with the corresponding value in the EEGs of clinically-normal
vigilant subjects (P b 0.05) (Fig. 4).

The group-level results (Figs. 3 and 4) were reflected at the level
of individual patients to the extent that 15 of 20 patients exhibited
an increase in the depth marker and 14 of 20 patients exhibited a
decrease in the fragmentation marker (Fig. 5).

4. Discussion

Sleep depth and sleep fragmentation are continuous, determinis-
tic (non-random) features of the instantaneous state of brain electri-
cal activity (brain states), but suitable methods for quantifying the
features have not been developed. Recurrence analysis is well suited
to the task, at least to the extent that the features are reflected in
the EEG, which is a temporal output signal of the brain. Our aim
was to show that improvements in sleep depth and sleep fragmenta-
tion that were established by clinical observation could be objectively
quantified by recurrence markers and statistically verified. Specifical-
ly, we asked whether mean normalized recurrence (recurrence-based
sleep depth) in patients who exhibited REM rebound during cPSGs
was significantly increased, regardless of sleep stage, compared with
the mean value in the corresponding diagnostic dPSGs. Further,
because correcting sleep fragmentation caused by arousal events is
the accepted physiological basis for the therapeutic improvement
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Fig. 3. Increase in sleep depth as a consequence of CPAP treatment (N = 20 patients). Re-
currence in the EEG from C3 was calculated second-by-second for the diagnostic and
CPAP-titration studies and normalized using the patient's average recurrence value for
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respectively. Lower panel, mean recurrence during WASO. Red line indicates r (11.6 ±
1.3%) in N = 20 vigilant subjects. †p b 0.05 compared with vigilant EEG (unpaired t test).
produced by CPAP, we expected that the GAI (a recurrence-based
marker for sleep fragmentation) would be decreased in the same
patients during the cPSG compared with the dPSG.

Mean sleep depth for total sleep (all sleep stages) (D)was 12% above
WASO during the dPSGs, but 64% above WASO in the cPSG, resulting in
an increase in sleep depth of 52% (Fig. 3). The effect on depth was
reflected in both NREM and REM sleep, during which the respective in-
creaseswere 44% and 19%. The validity of recurrencemarkers computed
from the EEG as surrogates for the sleep features was further supported
by the finding that fragmentation in sleep depth (evidenced by the
changes in GAI) was significantly reduced during total sleep and during
the NREM and REM stages (P b 0.05) (Fig. 4). On average, therefore,
analysis of the sleep EEG permitted objective characterization of recur-
rence markers for the clinical concepts of sleep depth and sleep frag-
mentation, as hypothesized. Although computing sleep depth and
fragmentation does not directly yield specific mechanistic insights into
sleep physiology or result in clinical improvements, the capability to ob-
jectively characterize those features of sleep may permit mechanistic
and translational studies that would otherwise be difficult to perform.

At the level of the individual patient, the hypothesized changes oc-
curred in 75% and 70% of the patients for depth and fragmentation, re-
spectively (Fig. 5). At least one of the effects occurred in 19 of the 20
patients. But themanner inwhich the twomeasures of dynamical change
in the EEG during sleep might be combined to produce an overall objec-
tive measure of sleep quality is unclear. When the results for change in
sleepdepthwere ordered by increasing effect, the corresponding changes
in fragmentation exhibited no correlation with patient number (Fig. 5),
suggesting that a simple linear combination of changes in the recurrence
markers probably would not correlate with subjective sleep quality [2].

The relative contributions to sleep quality due to changes that oc-
curred during NREM sleep compared with REM sleep also remain to be
assessed. Even though the study group was chosen because it exhibited
an increased amount of REM sleep (the clinical indication taken to indi-
cate improved sleep quality), improvements in recurrence-based depth

image of Fig.�3
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and fragmentation were greater during NREM sleep. One possibility is
that the distinction between NREM and REMmay not be critical with re-
gard to the problem of combining recurrence markers for the purpose
of computing an overall measure of sleep quality. Alternatively, sleep
quality may depend on differently weighted contributions from NREM
and REM sleep, depending on the nature and severity of the underlying
sleep disorder. The issues could be addressed empirically, for example
by employing principle components analysis.

During REM sleep the EEG resembles that of wakefulness, and
there is typically a subjective sensation of global relaxation, an in-
creased likelihood of complex dream imagery, and a strong subjective
sense of deep sleep. The tendency to awaken during REMmay depend
on whether an external stimulus is incorporated into the dream,
suggesting that dreaming and/or dream content may determine the
depth of REM at any given moment [6]. Despite the complexity and
variability of REM, at any particular moment it must correspond to a
specific brain state reflected in the EEG, similar to all other moments
of sleep. Recurrence analysis continuously characterizes all moments
of sleep without the need to incorporate special adjustments to ac-
commodate the unique clinical character of REM sleep.

Our overall results regarding recurrence characterization of brain
states during sleep (Figs. 2–5) were unaltered when the EEGs from deri-
vations other than C3 were analyzed. This outcome was consistent with
the basic assumption of cognitive neural science that brain-wide
nonlinear laws mediate cognitive function [21–23]. But even though the
EEG signal reflects an integrated confluence of global brain activity, the
observed redundancy of results from different derivations was not evi-
dence that recurrence analysis of EEG signals reflected only nonlocalized
information about brain activity. The possibility exists that other para-
metric choices in the analysis (vector dimension, number of lag points,
as examples) might be useful for detecting determinism that occurs at
other temporal and/or spatial locations. Moreover recurrence analysis in-
volves more variables than r(t) [17]. We expect that useful information
regarding sleep statesmay be obtained by exploring the spatial extension
of brain activity using other recurrence variables and parametric values.

In summary, recurrence analysis provides a potentially useful
framework for integrating and interpreting sleep depth and stability
across all stages of sleep on a continuous, real-time numeric scale.
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