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Abstract
Purpose This study aims to assess the association between
excessive daytime sleepiness (EDS) and variables extracted
from the pulse-oximetry signal obtained during overnight
polysomnography.
Methods A cross-sectional design was used to study the
relation between four hypoxemia variables and EDS as
determined by Epworth Sleepiness Scale scores (ESSS) in
200 consecutive patients, newly diagnosed with obstructive
sleep apnea (OSA), as defined by an apnea–hypopnea index
(AHI)≥15. Hypoxemia measurements were compared be-
tween sleepy (ESSS≥10) and nonsleepy (ESSS<10) pa-
tients before and after dichotomizing the cohort for each
hypoxemia variable (and for AHI) such that there were 35
(165) patients in each of the corresponding higher (lower)
subcohorts. The hypoxemia variables were combined into a
biomarker, and its accuracy for predicting sleepiness in
individual patients was evaluated. We planned to interpret
prediction accuracy above 80 % as evidence that hypoxemia
predicted EDS.
Results Hypoxemia was unassociated with sleepiness in
OSA patients with AHI in the range of 15 to 50. In patients
with AHI>50, the hypoxemia biomarker (but not individual

hypoxemia variables) predicted sleepiness with 82 %
accuracy.
Conclusion Nocturnal hypoxemia as determined by a
polyvariable biomarker reliably predicted EDS in patients
with severe OSA (AHI>50), indicating that oxygen fluctu-
ation had a direct role in the development of EDS in patients
with severe OSA.
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Introduction

Overnight pulse oximetry is one of many data traces
obtained during routine polysomnography performed for
the purpose of diagnosing obstructive sleep apnea (OSA).
Intermittent hypoxia has been shown to produce a selective
pro-inflammatory cellular response, with an increased elab-
oration of substances—such as NF-ĸB and TNF-α—which
are potentially involved in homeostatic sleep drive [1].
Several distinct but related variables derived from the
pulse-oximetry signal—including the mean overnight oxy-
gen saturation (SpO2%), the minimum SpO2%, the cumula-
tive time spent with SpO2% less than a threshold amount
(e.g., SpO2%<95 %), and the desaturation index—have
been linked with excessive daytime sleepiness (EDS) in
patients with OSA [2–9]. However, the associations in many
of these studies were weak and inconsistently manifested by
any single given hypoxemia variable. Moreover, indices of
hypoxemia typically co-migrate with other polysomno-
graphic variables, including apnea–hypopnea index (AHI),
arousal index, and sleep stage transitions, making it difficult
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to judge whether measures of hypoxemia can themselves
causally explain the presence of EDS.

The limitations could have arisen from an overly broad
application of the hypoxemia theory to OSA patients. For
example, the frequency of reversible airflow limitation
events (as determined by AHI) may influence whether an
individual measure of hypoxemia can predict EDS. Another
possibility is that analysis of a single descriptive variable
(e.g., the minimum SpO2%) independent of one another
may be insufficient to characterize the composite of the
burden of intermittent hypoxemia as a physiologic stressor.
An alternative approach could be to assume that each vari-
able reflects a different aspect of the complex relationship
between EDS and hypoxemia, and that the true predictive
power inherent in the pulse-oximetry signal is best captured
by means of a predetermined combination of the variables.

We hypothesized that the reports of links between EDS
and individual hypoxemia variables in OSA cohorts com-
prising patients with a wide range of OSA severity (AHI
range, 5–120 events/h [2–9] actually reflected a causal as-
sociation that existed principally in patients with high AHI
values (increased burden of intermittent hypoxemia). Our
first aim was to compare measurements of hypoxemia vari-
ables in sleepy and nonsleepy patients with OSA and then to
dichotomize the cohort according to predetermined hypox-
emia thresholds, repeating the comparisons in the
subcohorts. We expected to find weak differences in the
study cohort that could best be explained as resulting from
the patients above the thresholds. Our second aim was to
compute a hypoxemia biomarker and evaluate its accuracy.
We expected that the biomarker would predict sleepiness in
the supra-threshold patients more reliably than did the indi-
vidual hypoxemia variables.

Methods

Patients

The participants were recruited from patients seen in the
sleep-medicine clinic at the Overton Brooks Veterans Af-
fairs Medical Center who underwent an overnight cardio-
pulmonary study (Embletta X100, Embla, Broomfield, CO).
The recording montage consisted of a nasal pressure trans-
ducer cannula, nasal–oral thermistor sensor, thoracic and
abdominal respiratory effort bands, body-position sensor,
and a fingertip pulse oximetry. Sleep efficiency was deter-
mined by actigraphy, expressed as the percent ratio of the
immobility signal to the total recording time (ActiSleep,
Actigraph, Pensacola, FL).

Apneas were defined as a ≥90 % decrease in airflow,
measured by nasal–oral thermistor, lasting at least 10 s.
Hypopneas were defined as airflow reductions of >50 %,

as measured by the nasal pressure transducer sensor, lasting
at least 10 s and producing a ≥3 % decrease in the SpO2%
[10]. Apneas and hypopneas were scored manually by a
certified sleep technologist and reviewed by a board-
certified sleep-medicine physician. The AHI was the sum
of apneas and hypopneas per hour of sleep, as computed by
actigraphy.

The polysomnograms from 200 consecutive patients
meeting inclusion and exclusion criteria were analyzed.
Studies in which the AHI was ≥15 events/h were included.
Exclusion criteria included a current history of known alco-
hol or drug abuse, the presence of medications that could
adversely affect sleep or respiration, history of prior treat-
ment for OSA, and a known diagnosis of other identifiable
sleep disorders. Subjective sleepiness was assessed using
the Epworth Sleepiness Scale (ESS); EDS was defined as
an ESS score (ESSS) of ≥10. All patient-related procedures
were approved by the institutional review board for human
experimentation.

Hypoxemia variables

Pulse-oximetry traces were evaluated to determine four in-
dividual variables: (1) the percent of recorded time during
which arterial oxygen saturation was <90 % (P90); (2) the
oxygen desaturation index (ODI), defined as the hourly rate
of oxygen desaturations of ≥4 % (threshold incorporated
into the Embletta software); (3) the average percent
desaturation (AD); (4) the lowest percent saturation (LS).

Sleep
Clinic

Patients

Overnight
Sleep
Study

OSA
Patients
(AHI   15)

Pulse-Oximetry
Signal

ODI P90

AD LS

Group-Level
Sleepiness
Analyses

Dichotomized Cohort

Entire Cohort

Individual-Level
Sleepiness

Analysis

Dichotomized Cohort

Entire Cohort

Fig. 1 Experimental design. Four hypoxemia variables were extracted
from the pulse-oximetry signals recorded during overnight sleep stud-
ies on 200 patients with OSA (AHI≥15). The relationship of the
particular variables (and their combination in a biomarker) and sleep-
iness (ESS) was determined using group-level statistics (means, corre-
lation coefficient, and odds ratio) and individual-level statistics (area
under the receiver operating characteristics curve), both before and
after dichotomizing the study cohort based on severity thresholds for
each hypoxemia variable (corresponding AHI threshold, >50 events/h)
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All values were extracted from the pulse-oximetry signal
and scored by proprietary software (RemLogic 1.1, Embla).
The pulse-oximetry signal was exported as an EDF file,
converted to a MatLab-readable format (MathWorks, Need-
ham, MA), and analyzed using a custom code. Preliminary
studies showed that the computed hypoxemia values were
not materially different than those produced by the proprie-
tary software; the latter results are reported here.

Experimental design

The study cohort was evaluated as a whole and after
dichotomization based on thresholds for each of the
hypoxemia variables (Fig. 1). The thresholds were iden-
tified by ordering the values for each variable from
least to most hypoxemic and then arbitrarily dividing
the distributions (N=200) into subcohorts consisting of
the lower (N=165) and higher (N=35) hypoxemia
values (82/18 %). The process resulted in thresholds
of P90=18 %, ODI=50 events/h, AD=8 %, and LS=
86 %. The corresponding thresholds for the AHI and
hypoxemia biomarker (see below) were 50 and 0.75
events/h, respectively. The consequences of the arbitrary

choice for dividing the study cohort were examined
empirically.

Historical cohort

As a control for the potential role of the particular demo-
graphics of the study cohort (Table 1), we compared the
relationship between sleepiness and AHI in the study cohort
with the corresponding relationship in a cohort formed
during the Sleep Heart Health Study (SHHS), a multicenter
study of the cardiovascular and other consequences of sleep-
disordered breathing [11]. An SHHS dataset collected in
2001 and 2003 was searched and the AHI, ESS scores,
and pertinent demographic information were obtained for
all persons in the dataset who had no heart failure, emphy-
sema, chronic bronchitis, or hypertension (Table 1) [12].
The results were presented without regard to gender because
preliminary analyses of the AHI/ESSS relationship revealed
no gender-related differences (N=390).

Statistics

Differences in means and in variances were evaluated using
the t and F tests, respectively. When effects on variance
were found, the data were evaluated using the Mann–Whit-
ney U test. In these instances, the results were the same as
those found using the t test; for simplicity, therefore, all
reported differences were based on the t test. Linear corre-
lations were assessed using Pearson’s correlation coeffi-
cients (r) and evaluated for statistical significance using
the t test. Discriminant analysis [13] was used to compute
the optimal biomarker function (B) for sleepiness based on a
combination of the four hypoxemia variables. The proce-
dure resulted in a mathematical expression for B in which
the input was the set of four hypoxemia values for a

Table 1 Pertinent demographics for the study cohort and the SHHS
dataset [12]

This study SHHS dataset

Number of patients 200 (199 M, 1 F) 390 (201 M, 189 F)

White/Black (%) 73/27 89/11

Age (years) 58.8±10.8 64.0±9.3

BMI (kg/m2) 32.5±6.9 28.7±4.7

AHI range (events/h) 15–120 0–76

Mean±SD

Table 2 Group- and individual-level analyses of sleepiness (ESS score≥10) in the study cohort

Hypoxemia variable Group-level analyses Individual-level analysis

Mean±SD Sleepiness-HV correlation Sleepiness prediction accuracy

ESSS<10 ESSS≥10 r AUROC

P90 (%) 13.3*±19.0** 6.4±7.6 0.18* 58

ODI (events/h) 34.8*±26.5** 25.0±18.1 0.17* 59

AD (%) 6.8±2.6 6.4±2.1 0.18* 52

LS (%) 78.3±8.6 79.5±8.0 0.11 54

B (0–1 scale) 0.66±0.13* 0.59±0.09* 0.24* 68

Mean±SD

HV hypoxemia variable, r Pearson’s correlation coefficient, AUROC area under the receiver operating characteristics curve, B value of the
biomarker function formed from all four hypoxemia variables, P90 percent of bedtime when oxygen saturation was <90 %, ODI rate of oxygen
desaturation, AD average desaturation, LS lowest saturation

*P<0.05, t test; **P<0.05, F test
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particular patient, and the output was the probability that a
specific patient was sleepy (ESSS≥10). Details regarding
the determination of B are provided in the Appendix.

The accuracy of the B for predicting sleepiness was
evaluated by computing the area under the receiver operat-
ing characteristics curve (AUROC), which provides an
overall characterization of the sensitivity and specificity of
predictions (in our case, sleepiness) [13]. An AUROC of 50
would indicate that B was no better than a guess for
predicting sleepiness. An AUROC of 100 would indicate
that the predictions can be made with perfect accuracy for
each patient (a reliable clinical test typically has an AUROC
of >80–90 %).

The a priori probability for rejecting the null hypothesis
was P<0.05. The a posteriori P values were not listed
because no hypotheses were based on actual P values. The
hypoxemia variables were regarded as independent; conse-
quently no corrections were made for multiple tests.

Results

The means and variances for P90 and ODI were greater
(P<0.05) in the sleepy patients (Table 2). With the
exception of LS, the hypoxemia variables were each
significantly (P<0.05) but weakly (r<0.2) correlated
with ESS score. The hypoxemia variables did not
predict sleepiness for individual patients substantially
better than a guess, as indicated by the low AUROC
values (50=chance, 100=certainty). When the hypox-
emia variables were combined by discriminant analysis
to form a B for sleepiness, prediction accuracy increased
but remained below potentially useful clinical levels
(Table 2).

The hypothesis that sleepiness and hypoxemia were caus-
ally linked principally in patients with relatively severe
hypoxemia was tested by examining the associations in
subcohorts formed by dividing the study cohort at thresh-
olds for each hypoxemia variable such that 18 % (35/200) of
the values were above and 82 % (165/200) were below the

Table 3 Group-level and individual-level analyses of sleepiness in sub-cohorts of the study cohort

Hypoxemia variable threshold (T) Group-level analyses Individual-level analysis

HV–sleepiness correlation
(r)

HV-related increased sleepiness Sleepiness prediction accuracy
(AUROC)

Below T Above T OR Below T Above T

P90=18 % ~ 0 0.30 3.3* 50 74

ODI=50 events/h ~ 0 0.15 3.3* 52 70

AD=8 % ~ 0 0.38 1.3 50 69

LS=86 % 0.1 0.38 1.4 52 57

B=0.75 0.14 0.37 3.4* 56 82

Mean±SD

HV hypoxemia variable, AUROC area under the receiver operating characteristics curve, OR odds ratio, B value for biomarker function formed
from all four hypoxemia variables, r Pearson correlation coefficient, P90 percent of bedtime when oxygen saturation was <90 %, ODI rate of
oxygen desaturation, AD average desaturation, LS lowest saturation

*P<0.05, Chi-square test
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Fig. 2 Relationship between sleepiness and oxygen desaturation index
(ODI). a Scatterplot for ODI. b Percent sleepiness in subcohorts below
and above ODI=50 events/h. r Pearson’s correlation coefficient,
AUROC area under the receiver operating characteristics curve, OR
odds ratio. Patients at or above the dotted line were regarded as sleepy
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threshold. As expected, the hypoxemia variables were each
essentially unrelated to the ESS score (r≈0) in the
subcohorts below the threshold but were related in the
subcohorts above the threshold as indicated by the modest
r values, odds ratios for sleepiness, and AUROC values.
The predictive accuracy of B was 82 (scale, 50 to 100),
which exceeded the accuracy achieved using the variables
individually (Table 3; Fig. 5). When BMI was added as a
factor to the biomarker function, prediction accuracy in-
creased to 84 % (data not shown).

Scatter plots for individual hypoxemia variables visually
confirmed that a relationship with ESSS was apparent only
for patients above the thresholds (Figs. 2, 3, and 4).

When the threshold for dividing the cohort (82 %) was
changed by ±5 % (78–87 %), the overall results were similar
to those found using the 82 % threshold (Tables 2 and 3). For
thresholds of >87 %, the severe hypoxemia subcohorts be-
came too small to permit meaningful statistical analysis; for
thresholds of <78 %, the statistical distinctions between the
subcohorts became progressively weaker (data not shown).

Patients with AHI<50 events/h (82 % threshold) were
more likely than not to be sleepy (Fig. 5a, green bar), but the

ESS scores were uncorrelated with the AHI (r≈0) (Fig. 5).
The percent of sleepy patients was greater among patients
with an AHI≥50 events/h (OR=2.7, P<0.05), but AHI did
not predict sleepiness (AUROC=55). AHI was 37.5±22.1
events/h (N=127) and 31.5±16.7 events/h (N=73) for the
sleepy and nonsleepy patients, respectively (P<0.05); the
difference originated almost entirely from patients with
AHI≥50 events/h (Fig. 5a).

The SHHS historical cohort was less obese and probably
healthier than the study cohort (Table 1). Nevertheless, the
SHHS cohort exhibited a relationship between AHI and
ESSS similar to that in the study cohort (Fig. 6 compared
with Fig. 5). For both cohorts, there was essentially no
sleepiness-EDS correlation except among the patients with
severe OSA, even though percent sleepiness increased when
patients were stratified by AHI range (Figs. 5b and 6b).

Discussion

The character of the relation between nocturnal hypoxemia
and sleepiness in patients with OSA (AHI=15–120
events/h) was studied. We expected to find a direct link,
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but only in patients with high AHI values. The hypothesis was
tested by dichotomizing an OHA cohort at predetermined
thresholds for hypoxemia variables extracted from the
pulse-oximetry signal, and comparing statistical measures
of association obtained from the subcohorts. We planned to
conclude that a causal link had been shown if (1) associa-
tions occurred only in subcohorts above the thresholds and
(2) sleepiness was reliably predictable in the patients in
those subcohorts, based solely on the values of their hypox-
emia variables.

The means and variances of individual hypoxemia vari-
ables differed between sleepy and nonsleepy patients
(Table 2, group level analyses), but interpatient variability
prevented the use of the data for reliable prediction of
sleepiness (the hallmark of a mechanistic relationship)
(Table 2, AUROC values). Both results were only margin-
ally improved when the variables were combined into a
biomarker (Table 2). But when the cohort was dichotomized
with respect to the hypoxemia variables, a different picture
of the hypoxemia–sleepiness relationship emerged (Table 3).
Sleepiness was essentially unrelated to hypoxemia for

values below the thresholds. Above the thresholds, there
was some indication of a relationship (the correlation co-
efficients and the AUROC levels), but the strongest evi-
dence was the finding that the hypoxemia biomarker
yielded an AUROC of 82. Taken together, the results indi-
cated that EDS and hypoxemia were directly related in the
more severely hypoxemic patients and that these patients
could be identified based on a biomarker computed from a
group of four conventional hypoxemia measures.

The rationale for the choice of a threshold level stemmed
from the need to define subcohorts that exhibited differing
levels of hypoxemia. Dichotomization at the highest 18 %
was chosen arbitrarily, and the consequences of the choice
were examined. Small increases had no effect on the study
conclusion. Above 23 %, the means of the hypoxemia vari-
ables in the subcohorts were not sufficiently distinct to permit
the study hypothesis to be tested (the subcohorts were not
materially different). For example, dichotomization at 50 %
(which corresponded to AHI subcohorts of 15–37, >37) failed
to reveal the effect of oxygen fluctuation on EDS. The conse-
quences of choosing higher thresholds indicated that the link
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between hypoxemia and EDS found in the cohort was limited
to patients with an AHI>50.

The results were consistent with prior research, and helps
elucidate the variability of results regarding the relationship
between hypoxemia and EDS found in earlier studies [2–9].
Hypoxemia variables in OSA patients were commonly asso-
ciated statistically with symptomatic sleepiness, depending on
demographic factors including BMI, age, gender, and

comorbid conditions (Fig. 7). These studies had explored
putative relationships under the assumption that a linear sta-
tistical relationship between sleepiness and hypoxemia existed
across the full spectrum of OSA severity (AHI>5 events/h).
Our results suggested that below an OSA severity thresh-
old—50 events/h in our study but probably higher or lower
in other cohorts having different demographics—hypoxemia
and sleepiness were associated only as co-effects caused by
other physiological factors, but were associated as cause–
effect above the threshold.

The variables commonly used to characterize the pulse-
oximetry signal have each proved useful, but none to the
extent of marginalizing the others, perhaps because each
captures a different facet of hypoxemia. We hypothesized
that a biomarker combining multiple features of the pulse
oximetry trace would allow a more robust association be-
tween SpO2% and EDS to be demonstrated. The evidence
obtained supported this hypothesis (Table 3; Fig. 4).

One kind of limitation on this study involves the possi-
bility that patients recruited from a population with different
demographics may yield different results. For example, race
may affect the development of EDS; prior research has
demonstrated higher ESSS among black patients, compared
with whites, independent of effects of disease severity or
BMI [14, 15]. But the similarities between the study cohort
and that of the SHHS probably indicated that the demo-
graphics of the OSA population chosen for this study affect-
ed the level (rather than the existence) of the hypoxemia
threshold at which a link was created (or at least became
clinically meaningful). Both cohorts exhibited progressively
elevated rates of sleepy patients with greater AHI (Figs. 5
and 6), and in both cohorts, there was an absence of corre-
lation and predictability between sleepiness and AHI levels
within the patient groups stratified by AHI.

Our results provided evidence of a causal association but
not evidence of its direction. We assumed that nocturnal
hypoxia caused sleepiness, but the sleepiness data were
obtained prior to the hypoxemia data, and the designa-
tion of which was the cause and which the effect was
made on the basis of general physiological consider-
ations, not observation. The possibility remains that
sleepiness caused hypoxemia.

Known contributors to the pathophysiology of EDS other
than hypoxemia were not explicitly considered. The
macroarchitecture of sleep (particularly the extent of light
sleep) was not determined, and sleep efficiency was only
estimated, using actigraphy. Additionally, the consequences
of sympathetic activation on the complexity of EDS were
not assessed. The Sisyphean task of satisfactorily explaining
EDS will ultimately depend on a coordinated interpretation
of multiple polysomnographic signals and appropriate bio-
chemical data. Even so, data extracted from a single physi-
ological signal were good predictors of the occurrence of
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Fig. 7 Published reports of group-level analyses of the association
between hypoxemia and sleepiness in patients with OSA
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EDS in some patients with OSA, and the formal definition of
the link (Appendix) may be useful in identifying at-risk
patients.

The Epworth scale is subjective and therefore arguably
not the optimal measure of sleepiness. We think that this
limitation is probably not significant because the symptoms
quantified by the Epworth scale were precisely what we
sought to relate to hypoxemia. We did not address the issue
of the cellular mechanisms linking SpO2% to sleepiness.
The role of intermittent hypoxemia in the development of
inflammatory mediators known to be involved with homeo-
static sleep drive, and in the development of damage to
neuronal structures critical for proper functioning of the
ascending reticular activating system, is a mechanism that
has been described by prior publications [1, 16, 17].

In conclusion, in OSA patients with AHI>50 events/h,
four standard hypoxemia variables combined into a bio-
marker reliably predicted the presence of EDS. For patients
with AHI≤50 events/h, the SpO2% data could not predict
sleepiness better than a guess, implying that nonhypoxemia
variables are likely responsible for sleepiness in patients
with milder degrees of OSA. We conclude that nocturnal
hypoxemia is likely to be causally related to sleepiness in
OSA patients only when the burden of intermittent hypox-
emia is marked, as in patients with severely elevated AHI.

Conflicts of interest The authors declare no conflicts of interest.

Appendix

Using Fisher’s linear discriminant analysis, we determined
the coefficients of the biomarker function B that combined
the hypoxemia variables in a way that best separated the
sleepy (ESS score, ≥10) and nonsleepy (ESS score, <10).
The result was:

B ¼ 0:04� P90þ 0:02� ODIþ 0:01� AD þ 0:05

� LS�3:

The logit of Bwas used to scale the value for each patient to
the 0–1 range. For example, when the actual values of P90,
ODI, AD, and LS were 29.4, 46, 9, and 70 (units in percent
except events per hour for ODI), Bwas 1.756, and its logit was
0.787. A 10-fold cross-validation process was used to evaluate
the prediction accuracy ofB. Initially, 90% of the data was used
to determine B and the remaining 10 % was used to evaluate
prediction accuracy. Then the process was repeated ten times
(with differing choices for the composition of the training and
evaluation sets), and the results averaged. The prediction accu-
racy (determined by AUROC) was greater than 80 %.

B reliably predicted sleepiness only when the logit of B
was greater than 0.75 (Fig. 4). Above this threshold,

prediction accuracy was 82 % (determined by AUROC),
and the optimal combination of whose sensitivity and spec-
ificity were 0.87 and 0.67, respectively. Below the thresh-
old, B was no better than a guess.
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