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A B S T R A C T

Background: The dynamical complexity of brain electrical activity manifested in the EEG is quantifiable using
recurrence analysis (RA). Employing RA, we described and validated an originative method for automatically
classifying epochs of sleep that is conceptually and instrumentally distinct from the existing method.
New method: Complexity in single overnight EEGs was characterized second-by-second using four RA variables
that were each averaged over consecutive 30-sec epochs to form four-component vectors. The vectors were
staged using four-component cluster analysis. Method validity and utility were established by showing: (1) inter-
and intra-subject consistency of staging results (method insusceptible to nonstationarity of the EEG); (2) use of
method to eliminate costly and arduous visual staging in a binary classifications task for detecting a neurogenic
disorder; (3) ability of method to provide new physiological insights into brain activity during sleep.
Results: RA of sleep-acquired EEGs yielded four continuous measures of complexity and its change-rate that
allowed automatic classification of epochs into four statistically distinct clusters (“stages”). Matched subjects
with and without mental distress were accurately classified using biomarkers based on stage designations.
Comparison with existing methods: For binary-classification purposes, the method was cheaper, faster, and at least
as accurate as the existing staging method. Epoch-by-epoch comparison of new versus existing methods revealed
that the latter assigned epochs having widely different dynamical complexities into the same stage (dynamical
incoherence).
Conclusions: Sleep can be automatically staged using an originative method that is fundamentally different from
the existing method.

1. Introduction

Sleep macroarchitecture is conventionally characterized by visually
analyzing multiple signals from brain and muscle in 30-s epochs and
classifying them into stages according to standardized rules (American
Academy of Sleep Medicine, 2007).The concept of sleep stage is fun-
damental for understanding sleep physiology (Kryger et al., 2010), and
knowledge of visually determined sleep-stage distributions permits
normal and pathological sleep to be distinguished (Chokroverty et al.,
2005). Visual staging is about 80% reliable (Chokroverty et al., 2005;
Ma et al., 2017). Computer-based (“automatic”) staging is an alter-
native (Ma et al., 2017; Younes, 2017), but most proposed systems
mimic the visual method and add additional unreliability (Boostani
et al., 2017; Mariani et al., 2016).

Recurrence analysis (RA) is a technique for evaluating time-varying

output signals from complex systems (Zbilut and Webber, 2006). Ap-
plied to the EEG (Carrubba et al., 2006, 2008a), RA quantifies the in-
stantaneous amount of law-governed (“non-random”) electrical activity
in the brain (its functional “complexity”). We employed RA to detect
non-time-linked evoked potentials (Carrubba et al., 2008b), demon-
strate the existence of a human magnetic sense (Carrubba et al., 2007),
detect changes in brain activity associated with multiple sclerosis
(Carrubba et al., 2012a), identify alterations in brain activity caused by
sensory transduction of electromagnetic fields (Frilot et al., 2013), and
characterize sleep depth (Carrubba et al., 2012b). When RA values were
combined with visual staging information to create sleep markers, in-
dividuals with mental health impairment were successfully classified
(McCarty et al., 2014).

Here, employing four continuous recurrence variables computed
from a single EEG signal, we described and validated a new method for
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automatically staging sleep that is conceptually and methodologically
distinct from the existing staging method. First we showed that recur-
rence variables captured the coarse- and fine-grained temporal activity
of the sleep EEG, thereby permitting continuous quantitation on any
desired time scale. Second we utilized cluster analysis to group 30-s
sleep epochs, modeled as four-component vectors defined by the values
of the RA variables, into four distinct clusters (“stages”). Third, we
presented evidence for the validly and utility of the method by showing
that the recurrence values of intra-subject stages differed consistently,
that the method could replace visual staging for the purpose of classi-
fying subjects as with or without mental illness, and that the method
yielded insights into sleep physiology not otherwise observable.

2. Methods and materials

2.1. Subjects

A total 149 clinically normal subjects were chosen from participants
in the Sleep Heart Health Study (SHHS) who underwent overnight
polysomnography in 2001 and 2003 (3295 participants) (Dean et al.,
2016; Quan et al., 1997; Redline et al., 1998); de-identified EEG data
and relevant covariate information were used (Sleep Heart, 2013). The
subjects were 60.2 ± 9.3 years of age.

Another study cohort was formed from a SHHS dataset collected
between 1995–1998 (6441 participants), which was searched to de-
termine subjects for whom mental health status had been ascertained
based on the Mental Health Inventory questionnaire (MHI-5). We ar-
bitrarily regarded an MHI-5 score> 50 as indicating normal mental
health and a score< 50 as indicating impaired mental health (Rumph
et al., 2001). Two sub-cohorts were formed by randomly choosing 34
subjects who had MHI-5 scores less than 50 and matching them with 34
subjects with who had scores greater than 50 (Table 1).

The appropriate institutional review boards for human research
where the data was collected approved all research-related procedures.

2.2. EEG measurements

Details regarding the EEG recording procedures were described
elsewhere (Redline et al., 1998). Each EEG was about eight hours in
duration, obtained during overnight sleep. EEGs recorded from C3–M2
and C4–M1were sampled at 125 Hz and provided as MAT files. We
interpolated the signals to 500 Hz (our laboratory standard sampling
frequency for the EEG) using a standard algorithm (Matlab, Mathworks,
Natick, MA, USA), digitally filtered the signals to pass 0.5–35 Hz, and
evaluated them using custom codes in a standard numerical computing
environment (Matlab). The original SHHS investigators divided the

sleep period into 30-second epochs and classified each one into mu-
tually exclusive stages according to standard rules; wake (W), REM,
light sleep (N1, N2), and deep sleep (N3, N4).

Table 1
Demographic data for subjects with and without mental impairment.

Normal Mental Health Impaired Mental Health

N 34 34
Age (years) 57.6 ± 2.0 58.2 ± 2.0
BMI (kg/m2) 25.6 ± 2.0 24.6 ± 0.6
Male/Female 12/22 12/22
MHI-5 (0-100) 81.9 ± 2.2 40.4 ± 1.5

N, number of subjects; BMI, body mass index; MHI-5, Mental Health Inventory-
5. Normal, MHI-5 > 50; Impaired, MHI-5 < 50. Mean ± SD.

Fig. 1. Procedure for automatically grouping
brain states occurring during sleep. The over-
night EEG was converted into four recurrence
time series that each characterized the dyna-
mical complexity of the EEG. Each series was
averaged epoch-by-epoch resulting in four re-

currence measures per epoch. The epochs were algorithmically assigned to one of four groups labeled S1 to S4 based on the mean value of r.

Fig. 2. Nonstationarity in the human EEG during sleep.

Fig. 3. Temporal behavior of recurrence measures of the sleep EEG from a ty-
pical subject. (a) and (b), EEG complexity. (c) and (d), EEG fragmentation
(change in complexity) The curves typically consisted of about 900 points, one
per epoch, and were smoothed using a Savitsky-Golay filter. The inserts depict
the unsmoothed epoch-by-epoch values of the variables that occurred in the
indicated 30-minute interval. Units for fr and fd are the means of the absolute
values of the changes in depth that occurred over 1-sec intervals (see Methods).

C. Frilot et al. Journal of Neuroscience Methods 308 (2018) 135–141

136



2.3. Recurrence analysis

Recurrence analysis imposes no restrictions on the statistical prop-
erties of signals produced by complex systems (Frilot et al., 2015).The
computational details of RA applied to the EEG have been provided
(Frilot et al., 2015). Briefly, 5-component groups of numbers (“vec-
tors”) were formed that consisted of the EEG amplitude at time t and
four earlier times identified by successive time lags of 10ms. Following
standard practice (Heath, 2000), the path in a five-dimensional

mathematical hyperspace of all such vectors obtainable from one
second of the EEG (480 vectors, given our choices of sampling rate,
vector dimension, and delay time) was interpreted to indicate the
presence of law-governed activity in the EEG. The amount of lawful
activity in each second of EEG was quantified using the variables per-
cent recurrence (“r”), defined as the percent of the vectors that were
near other vectors (and hence were recurrent), and percent de-
terminism (“d”), defined as the percent of the recurrent vectors that
were adjacent to at least one other recurrent vector (a measure of the

Fig. 4. Cluster formation in four typical subjects. Two-dimensional projections (r, fr) from the four-dimensional cluster space (r, d, fr, fd) are shown. Individual epochs
depicted as dots. Inserts show cluster mean ± SD.

Fig. 5. Means of recurrence variables in the normal cohort as a function of group. N=149. For each variable, the mean in a given group differed pair-wise from the
other means (S1 vs. S, S3, or S4; S2 vs. S3 or S4; S3 vs. S4) (P < 0.05). Error bars not resolved at indicated scale.
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persistence of the recurrence). Both variables quantified the complexity
of the signal in the sense that higher values indicate less complexity
(Zbilut and Webber, 2006). Both r and d were minimal during wake and
maximal during deep sleep (Carrubba et al., 2012b; Wang et al., 2013),
indicating that they could be interpreted as measures of sleep depth.
The variables were computed second by second, resulting in chron-
ological sequences (r(t), d(t)) that consisted of approximately 28,800
points for a typical 8-hr EEG.

Additional recurrence variables were employed to characterize the
rates of change of r(t) and d(t) (their first derivatives), labeled “frag-
mentation variables.” The fragmentation occurring at the ith second in r
(t) (“fr”) was defined as |{(ri – ri-1)/Δt}/ri-1|, where Δt=1 s; fragmen-
tation in d(t) (“fd”) was similarly defined as |{(di – di-1)/Δt}di-1|.
Because fr and fd were defined in terms of absolute values of change,
they did not depend on whether the fragmentation resulted in an in-
crease or decrease in complexity. Both variables were expressed as a
percent change.

The second-by-second values of r, d, fr, and fd were averaged over
successive 30-s epochs, resulting in approximately 900 epochs for a
typical overnight period of sleep, each characterized by two measures
of sleep depth and two of fragmentation.

2.4. Cluster analysis

The RA-characterized epochs were grouped automatically using
cluster analysis, a method for identifying clusters of data in a dataset
based upon attributes that make the individual items of data in a group
similar to one another. No prior knowledge is required regarding which
items belong in which group; the number of groups (“k”) is chosen by
the user rather than fixed by the clustering algorithm (Cluster Analysis,
2011). For a given k, the algorithm combines the multiple measures of
each item (here, an EEG epoch), thereby characterizing it by a single
number, iteratively estimates the group means, and assigns each item to
the group for which the item’s mathematical distance to the group

mean is a minimum. Whether the groups formed for any particular k are
objectively meaningful is an empirical question.

In preliminary studies involving different choices of k, we found
that the epochs formed statistically independent groups for k’s at least
as high as 6. Here we arbitrarily chose k=4, which was sufficient for
achieving our purposes. The four automatically determined groups
were defined to be the sleep states S1 to S4 based on increasing mean r
(decreasing complexity). The overall procedure is summarized in Fig. 1.

2.5. Discriminant analysis

Linear discriminant analysis (DA) is a method for finding a combi-
nation of features (“markers”) that best separates data into two classes.
We previously reported that markers formed by combining RA-char-
acterized epochs of the sleep EEG and visual-stage information accu-
rately classified subjects with psychological distress (McCarty et al.,
2014). Here, we evaluated the validity of automatically grouping brain
states during sleep by determining whether the grouping information
(S1–S4) could replace the visual-stage information (Wake, REM, light
sleep, deep sleep) and yield comparable classification accuracies.

Using DA, The four epoch-level recurrence values from the subjects
in the MHI-5 cohort were combined with the four group designations
determined by cluster analysis to produce sixteen sleep markers (Kim
et al., 2013), and the number of markers and the particular combination
that yielded the best binary classification of the 68 subjects was de-
termined. Accuracy was calculated as the ratio of true positive and
negative classifications to the total number of subjects, expressed as a
percent, using clinical diagnosis as ground truth. For control purposes,
the entire process was repeated using corresponding markers formed
using visual-stage information.

2.6. Statistics

Pair-wise means tests were performed using the Mann-Whitney U
test or the Wilcoxon signed-rank test, depending on whether the data
consisted of matched pairs. When the data consisted of repeated mea-
sures, the Bonferroni correction was used. The probability that the
apparent increased subject classification accuracy obtained using the
new method could be explained by chance was evaluated using the
binomial theorem. For clarity of presentation, the overnight r(t) and d
(t) curves were smoothed using a cubic 119-point Savitzky-Golay filter
(Sgolayfilt, Matlab).

3. Results

3.1. EEG nonstationarity

EEGs were recorded for 7–8 h from each of ten randomly selected
clinically normal sleeping subjects, and the first zero of the auto-
correlation function (FZAC) was determined second-by-second. The
calculated values (∼28,000 /subject) were divided into 4-ms bins,
averaged, and normalized. The resulting histogram (Fig. 2) indicated
that the statistical properties of the sleep EEG changed drastically from
second to second, indicating that the EEGs were highly nonstationary.

3.2. Characterizing sleep EEGs

The time dependence of the four recurrence variables that described
the sleep EEG—two that measured dynamical complexity (r and d) and
two that measured its fragmentation (fr and fd)—revealed ultradian
architecture consisting of 2–5 relative maxima/minima and associated
fine structure; the results for a representative subject are shown in
Fig. 3.

The smoothed curves for r and d were similar (Fig. 3a and b) but
differed at the single-epoch level (inserts, Fig. 3a and b), indicating that
the two variables captured different physiological aspects of the EEG

Fig. 6. Determination of number of sleep markers needed for maximum clas-
sification accuracy of subjects with or without mental impairment as a function
of sleep-staging method. Each point is the mean of five replicate determina-
tions. Accuracy did not increase when more than 10 markers were employed.
Across the 3–10 range accuracy was greater using automatic grouping (bino-
mial theorem, P < 0.05).

Table 2
Epoch-level comparison between automatic and visual staging of the normal
cohort (155,089 epochs).

Automatic
Stage

Number of Epochs Visual Stage (% of Automatic Stage)

W REM Light Sleep Deep Sleep

S1 23,765 66 15 19 0
S2 32,317 43 23 34 0
S3 51,202 17 25 55 3
S4 47,805 2 6 52 40
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during sleep. The smoothed curves for fr and fd (Fig. 3c and d) com-
monly exhibited relative minima during intervals of sleep when the
depth variables were relative maxima. As with the complexity vari-
ables, the fragmentation variables resembled one another over broad

time scales but differed at the level of single epochs (inserts, Fig. 3c and
d).

Fig. 7. Four typical visual-stage hypnograms and their corresponding brain-state hypnograms (a–d). Sleep-period intervals of W (green) and REM (yellow) in which
no change in stage was observed were found to consist of 2–4 groups of brain states (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Table 3
Recurrence values of W epochs as a function of location in the sleep cycle. DSP, during sleep period. Mean ± SD. For both data sets, *P < 0.001 compared with Pre-
sleep and with Post-sleep. Wilcoxon signed-rank test with Bonferroni correction for repeated measures.

Wake Period Time (min) Recurrence Variables (%)

r d fr fd

a) Normal subjects (N=149)
Pre-sleep 56.7 ± 40.3 10.7 ± 4.1 55.4 ± 7.0 73.0 ± 17.5 20.7 ± 3.1
Post-sleep 13.3 ± 18.4 10.7 ± 3.0 56.2 ± 5.5 73.0 ± 17.9 20.8 ± 3.2
DSP 60.7 ± 46.0 *15.1 ± 2.9 *64.6 ± 5.5 *51.9 ± 11.7 *16.7 ± 2.2

b) MHI-5 Subjects (N=68)
Pre-sleep 50.1 ± 36.7 12.7 ± 3.2 61.4 ± 5.5 55.8 ± 9.0 17.3 ± 2.0
Post-sleep 11.9 ± 25.3 13.5 ± 7.0 62.7 ± 7.8 52.8 ± 13.5 3.6 ± 16.8
DSP 52.9 ± 44.4 *16.5 ± 2.8 *68.4 ± 4.5 *43.6 ± 6.0 *1.6 ± 14.5
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3.3. Staging EEG sleep states

When 30-sec EEG epochs were automatically assigned to one of four
clusters based on a computational combination of their recurrence va-
lues, a consistent geometrical pattern occurred comprising the spatial
separation of epochs into distinct groups; results for representative
subjects are shown in Fig. 4, which depicts one of the possible two-
dimensional projections from the four-dimensional computation space.
The groups thus formed (“stages”) were labeled S1 to S4 based on in-
creasing mean r (increasing signal recurrence, equivalent to decreasing
signal complexity).

3.4. Validation

If automatic grouping of RA-characterized EEG epochs occurring
during sleep created stages that actually were well-defined physiolo-
gical entities, we expect the recurrence variables to differ consistently
between the groups, and reproducibly so from subject to subject, in-
dicating that the staging was insusceptible to the nonstationarity of the
EEG; that result was observed (Fig. 5).

On average, epochs assigned to S1 exhibited the lowest values of r
and d and highest values of fr and fd, and epochs assigned to S4 ex-
hibited highest r and d, lowest fr and fd. The means of the epochs as-
signed to S2 and S3 had intermediate values of all four variables
(Fig. 5). Because the groups were labeled S1 to S4 based on increasing
mean r, it was necessarily a minimum in S1 and a maximum in S4. An
increase with group number also occurred in mean d even though it was
not definitionally constrained. Both fr and fd were also not constrained
and both decreased with group number. For each variable, the mean in
a given group was pair-wise different from all the other means (P <
0.05). The cohort-level statistical significance of the recurrence means
was also manifested at the level of the individual subject; of the 149
subjects × 6 stage comparisons (S1 vs S2, S3, S4, and S2 vs S3, S4, and
S3 vs S4) × 4 variables = 3576 separate nonparametic-test pair-wise
comparisons (Mann-Whitney U), more than 96% were significant (P <
0.05).

We evaluated the utility of automatic staging by comparing the
classification accuracy it facilitated with that achieved using staging
based on the visual method. Twenty subjects with no mental impair-
ment (MHI-5 > 50) and 20 subjects with impairment (MHI-5 < 50)
were randomly selected from matched subject sub-cohorts (Table 1),
and their epoch-level recurrence values were combined with automatic
grouping information to produce sixteen sleep markers (four variables x
four stages) that were used in a discriminant analysis to classify subjects
as with or without mental impairment. Maximum classification accu-
racy was determined using all possible combinations of the sleep
markers, taken 3 to 16 at a time. For both staging methods, accuracy
did not increase when more than 10 markers were employed (Fig. 6).
Post hoc analysis based on the binomial theorem suggested that the
accuracy achieved using automatic staging was greater than that found
using visual staging.

3.5. New sleep-physiology insights

We asked whether the EEG in sleep epochs assigned to a specific
visual stage exhibited similar dynamical activity. If so, the epochs in
each of the automatic stages would be expected to map mostly to one or
possibly two visual stages. The results of epoch-level staging compar-
isons of each of the 155,089 epochs in the 149 normal subjects revealed
that the visual stages W and REM were dynamically inhomogeneous
(Table 2).

We expected that automatic staging would be more sensitive than
was possible using the existing rule-based classification method. As
hypothesized, transitions between brain states occurred more often
than transitions between visual sleep stages. For all subjects studied,
about 24% of the automatically grouped EEG epochs were singlets

(preceding and succeeding epochs in different groups), compared with
4% in the visually-staged hypnograms. Similar differences in frequency
were observed for doublets (9% compared with 2%) and triplets (4%
compared with 1%). Typical examples of comparisons between the two
methods are shown in Fig. 7, where the mappings of W- and REM-
staged sleep epochs to automatic stages are highlighted

We evaluated whether the dynamical incoherence in wake (W) was
related to the timing of the sleep cycle. The W epochs were divided into
three periods depending on whether they occurred before sleep onset
(the first non-W epoch) (“pre-sleep”), during the sleep period (“DSP”),
or after it ended (“post-sleep”). In both study cohorts, we found that
DSP epochs exhibited significantly less complexity and less fragmen-
tation compared with epochs in the pre- and post-sleep periods
(Table 3), as hypothesized.

4. Discussion

We described an original objective method for staging sleep that is
fundamentally different from the existing subjective staging method.
Our method is based on four continuous recurrence variables computed
from a single EEG signal. The signal thus characterized is divided into
epochs that are algorithmically assigned to one of four groups (“stages”)
by means of cluster analysis. In a test group of 149 subjects, the method
yielded reliably consistent changes in each of the variables as a function
of stage (Fig. 5), indicating that the stages were well-defined physio-
logical entities, which is the purpose of staging. The usefulness of the
method was demonstrated by showing that, for the purpose of classi-
fying subjects as with or without mental illness, the staging results
could be used to replace the staging results obtained using the existing
staging method (Fig.6). Our method also yielded insights into sleep
physiology not otherwise observable (Fig. 7, Table 3), thereby further
demonstrating its usefulness. We did not address the issues of using
stages shorter than 30 s or more than four groups

In summary, we algorithmically defined brain dynamical activity in
terms of four physiologically based variables readily computable from a
single EEG derivation, and showed that human sleep could validly be
characterized naturally in terms of four statistically distinct groups of
similar states (stages).
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