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a  b  s  t  r  a  c  t

Sleep  architecture  is  characterized  by  classifying  polysomnographic  epochs  into  mutually  exclusive
stages.  Notwithstanding  the  clinical  importance  of  staging,  it has the  drawback  of  representing  sleep  as
a discrete  process.  Metrics  based  on the  electroencephalogram  (EEG)  are needed  to supplement  conven-
tional  sleep  staging  by allowing  a  description  of  sleep  in terms  of unitary,  continuous  markers.  Traditional
linear  and  nonlinear  techniques  for achieving  this  goal  have  not  proved  sufficient.  Employing  recurrence
analysis,  we  developed  a method  for  capturing  and  quantifying  the  dynamical  states  of  the brain  during
sleep.  The  method  yields  markers  for continuously  determining  sleep  depth,  for  detecting  sleep-specific
phasic  events,  and  for objectively  defining  potentially  useful  sleep  markers  and  indices.  Recurrence
markers  captured  the  coarse-  and fine-grained  temporal  activity  of  the  sleep  EEG,  thereby  permitting
continuous  quantitation  of  brain  electrical  activity  on any  desired  time  scale.  The  markers  were vali-
dated  with  respect  to the  tonic  behavior  (time  scale  of  seconds)  of  the  sleep  EEG  by  establishing  that
they  disambiguated  the  stages  of  sleep  that  are  defined  solely  on the  basis  of  EEG  activity.  Validation  of
the markers  over  time  scales  of  milliseconds  was  achieved  by showing  that  common  types  of sleep-EEG
phasic  events  could  be  detected  by recurrence  analysis.  The  method  was  also  used  to  define  a gener-
alized EEG  arousal  index  that  quantified  previously  unrecognized  sleep-stage-dependent  deterministic
properties  of  brain  electrical  activity.  Using  nonlinear  analysis  that  quantified  the  recurrence  properties
of  the  EEG,  we described  a novel  method  for producing  dynamic  markers  of brain  states  during  sleep.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Human sleep is commonly studied by analyzing simultane-
ously digitized signals from the brain, heart, skeletal muscle, and
other physiological systems (Kryger et al., 2010). Sleep macro-
architecture is characterized by analyzing the signals in 30-s epochs
and classifying them on the basis of standardized rules into one of
four mutually exclusive stages, either rapid-eye-movement (REM)
sleep or progressively deeper stages of non-REM sleep respectively
termed N1, N2, and N3 (American Academy of Sleep Medicine,
2007). Specific transient changes in the signals (phasic events) are
incorporated into the definitions of the stages. Knowledge of sleep-
stage distributions permits normal and pathological sleep to be
distinguished (Chokroverty et al., 2005).

The concept of sleep stage is fundamental in understanding
sleep physiology but has several limitations. Staging emphasizes
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the discontinuity of sleep, leading to its representation as a
discrete process rather than as a continuous process which is
actually the case. Additionally, phasic events in the electroen-
cephalogram (EEG) are pictured as more or less distinct phenomena
superimposed on the tonic EEG background, even though the
events and the background must have a unitary cause because they
are simultaneous outputs of the same system, the brain. Finally and
perhaps most importantly, the non-REM sleep stages are defined
in terms of the tonic/phasic behavior of the EEG, whereas REM
sleep is defined in terms of the coordinated behavior of three
signals, only one of which is the EEG. This fundamental differ-
ence prevents characterization of sleep stages in terms of a single,
continuous, physiological variable. Consideration of these limita-
tions suggested to us that a complementary perspective of sleep
based on EEG metrics alone might increase the usefulness of sleep
staging as an analytical tool and lead to new insights into sleep
neurodynamics.

EEG metrics have traditionally been obtained by means of time
averaging or spectral analysis (Thakor and Tong, 2004), but linear
techniques are not well-suited for characterizing sleep EEG activity
because it can change profoundly from second to second under the
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influence of brain-wide interactions (both electrical and chemical)
governed by nonlinear dynamical laws (Gazzaniga, 2000). Various
model-based nonlinear techniques have been proposed for extract-
ing information encoded in the EEG (Pradhan et al., 2012), but none
have been validated for use in studying EEGs recorded during sleep.
Recurrence analysis is a promising model-free approach for detect-
ing tonic and phasic changes in the vigilant EEG induced by external
stimuli (Carrubba et al., 2006, 2008). Our aim here was to describe
and validate an extension of that approach to the study of the sleep
EEG.

First we show that recurrence-based markers capture the
coarse- and fine-grained temporal activity of the sleep EEG, thereby
permitting continuous quantitation of brain electrical activity on
any desired time scale. Second, we validate the markers by show-
ing that they behave as expected when compared with the results
of sleep staging, and that they can detect the common phasic EEG
changes that occur during sleep. Third, we show that the markers
can be used to objectively define a stage-dependent generalization
of the conventional EEG arousal index.

2. Methods

2.1. Polysomnograms

Polysomnographic records (PSGs) of 7 attended overnight sleep
studies were randomly selected from the patient database of
our sleep disorders center. The PSGs had been recorded using
commercial equipment (Respironics, Murrysville, PA, USA) con-
trolled by proprietary software (Alice 5). All subjects had been
referred for follow-up regarding suspected sleep disorders, mostly
obstructive sleep apnea (OSA). The PSGs (800–900 30-s epochs)
were staged independently by two board-certified sleep physi-
cians according to standard rules (American Academy of Sleep
Medicine, 2007). The staging consisted of assigning each epoch
to wakefulness or to one of four rule-defined stages of sleep
(N1, N2, N3, REM). Where disagreement occurred, stage classi-
fication was achieved by consensus (<8% of the staged epochs).
The EEGs (six derivations) were analog-filtered to pass 0.3–109 Hz,
sampled at 500 Hz, and analyzed offline; only results from
derivation C4-M1 (International 10–20 System) are presented
because they were representative of the results from the other
derivations.

PSGs from 8 clinically normal subjects were obtained from the
BIH/MIT database at PhysioBank (Goldberger et al., 2000; Ichimaru
and Moody, 1999). The PSGs were staged by PhysioBank experts.
The EEGs (two derivations) were sampled at 100 Hz; only results
from Fz-Cz are presented.

All  EEG analyses were performed using a custom code after
removing frequencies outside the 0.5–35 Hz band (Matlab, Math-
Works, Natick, MA,  USA). The EEGs recorded in Alice 5 were
exported as CSV files; the PhysioBank EEGs were obtained as EDF
files and converted into a Matlab-readable format. To standard-
ize the scale for presentation of recurrence data (see below) the
PhysioBank data was interpolated to 500 Hz (Matlab Resample
command). Based on preliminary studies in which 500-Hz data was
sub-sampled to 100 Hz and then interpolated to 500 Hz, we  con-
cluded that the recurrence values of the interpolated PhysioBank
data were identical to those that would have been obtained had the
data originally been sampled at 500 Hz. The sampling frequency is
an important consideration in experimental studies that employ
recurrence methods to test hypotheses, but sampling frequency
was not a pivotal issue in defining the method described here or
establishing its validity.

The  study was approved by the institutional review board for
human research.
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Fig. 1. Application of recurrence analysis to electroencephalographic signals (EEGs)
recorded during sleep. (a) General description of the method for analyzing sleep
EEGs. (b) For tonic studies, the recurrence variables percent recurrence (%R) and
percent determinism (%D) are computed over successive one-second intervals. Aver-
aging over the 30 values in a conventional sleep epoch allows the overnight range

of the recurrence variables to be compared with the results of sleep staging. %Ri and

%Di are respectively the average percent recurrence (%R) and percent determinism
(%D)  for the ith sleep epoch. (c) Computation of %R(t) and %D(t) time series for use
in extracting information regarding phasic changes in the sleep EEG. %R and %D are
computed for overlapping time windows at a finer resolution (compared with (b)),
resulting in time series for the variables that can be analyzed to detect phasic events.

2.2. Recurrence analysis

Pertinent  mathematical details of recurrence quantification
analysis (RQA) have been described (Zbilut and Webber Jr.,
2006). Briefly, the signal together with time-lagged versions were
embedded in a hyper-dimensional phase space using embedding
conditions chosen and validated in earlier studies (see below). The
trajectory of the state vector was represented graphically by plot-
ting a point in two dimensions at the location addressed by (i,j)
whenever the ith and jth state vectors were near (within 15% of the
maximum Euclidean distance between any two states) (Eckmann
et al., 1987). The plots were quantified using two variables. The
first was percent recurrence (%R), defined as the number of points
in the plot divided by the total number of point locations (places
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Fig. 2. Typical results for percent recurrence (%R) and percent determinism (%D) computed using successive 1-s intervals in an overnight sleep EEG (C4-M1). Subject diagnosed
with  obstructive sleep apnea. (a) and (b) For presentation, curves were smoothed using a Savitzky–Golay filter. The horizontal lines indicate the average values of the variables
recorded from the subject during the epochs staged as wakefulness. Here and in subsequent Figures, sampling frequency, embedding dimension, delay time, line parameter,
500  Hz, 5, 5 points, 20 points, respectively. (c) Large-scale architecture seen in the conventional hypnogram, as determined by epoch-based sleep staging.

where a point could have been placed). The second was percent
determinism (%D), defined as the percentage points in the plot that
formed diagonal lines (chosen on the basis of preliminary studies
as ≥20 adjacent points). Both variables were interpreted to mean
that higher values evidenced more law-governed activity in the
EEG (less noise). Even so, they were only relative measures of law-
governed activity because their numerical values depended on the
choices of the embedding and other parameters. %R and %D were
formally related (only a recurrent point can count towards %D),
but we regarded them as equally relevant and mutually indepen-
dent. Other RQA variables have been defined (Zbilut and Webber
Jr., 2006) but were not employed here because in preliminary stud-
ies we did not find a benefit for analysis of sleep EEGs beyond that
provided by using %R and %D.

We  used an embedding dimension of 5 and a delay time of 5
points; the values were chosen based on modeling studies because
the formal methods used to embed solutions of nonlinear equa-
tions (Abarbanel, 1994) have not been validated for application to
the EEG. In the modeling studies, fully law-governed linear and
nonlinear signals (signals generated by mathematical equations)
having the same power spectrum as the EEG were added to base-
line EEGs, and the embedding parameters that optimized their
detection were identified (Carrubba et al., 2006). The values were
subsequently employed in stimulus–response studies involving
animal and human subjects, and shown to be effective for detecting
stimulus-induced changes in the EEG (Carrubba et al., 2007; Marino
et al., 2010).

2.3. Sleep EEG markers

Recurrence analysis was applied to both the tonic and phasic
characteristics of the sleep EEG (Fig. 1). Our approach was  based
on the theory that the EEG signal is an instantaneous sum of

electronically propagating contributions from numerous neuronal
networks, each governed by nonlinear intra- and inter-network
interactions. By hypothesis, the activities of at least some networks
were affected by sleep depth, resulting in dynamical changes in
the EEG that could be detected by recurrence analysis. To charac-
terize the tonic background, consecutive 1-s intervals (500 points)
of the EEG were embedded in phase space, and values for %R and
%D were calculated as described above. The calculations were iter-
ated in 1-s steps, thereby producing a series of values for %R and %D
that continuously captured the dynamical activity in the overnight
EEG.

Typical phasic events (transient changes) seen in the sleep EEG
include arousals, sleep spindles, and K complexes (Kryger et al.,
2010). To produce the fine-grained time series for %R and %D needed
to detect the transient changes, the recurrence calculations were
performed over time intervals smaller than one second, using a
shifting window (Fig. 1c). For example sleep spindles were detected
using a 30-point window (60 ms), with a one-point (2 ms)  shifting
window.

An EEG arousal is an abrupt shift of EEG frequency (identified
by an expert) lasting at least 3 s that occurs after at least 10 s of
sleep (American Academy of Sleep Medicine, 2007). The arousal
index (number of arousals per hour) is a measure of sleep frag-
mentation, which is a clinically validated determinant of excessive
daytime sleepiness. To illustrate a potential application of a recur-
rence marker, we defined a generalized arousal index based on %R,
and validated its association with sleep depth. Let xi be the value
of %R in the ith second of a normalized (to 100%) %R time series.
Following the definition of an arousal, we defined a generalized
arousal as (xi−2 + xi−1 + xi)/3–(xi−3 + xi−4 + . . . + xi−12)/10, counted
each instance where the generalized arousal was >|25%|, and com-
puted the resulting generalized arousal indices (number of events
per hour) for each sleep stage.
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Fig. 3. Percent recurrence (%R) and percent determinism (%D) computed using successive 1-s intervals in an overnight sleep EEG (C4-M1) from a subject with obstructive
sleep  apnea. (a) Recurrence variables averaged epoch by epoch and color-coded by sleep stage (determined by PhysioBank experts). Each point represents the average value
of  the recurrence variable for one 30-s EEG epoch. (b) Mean ± SD and stage-specific number of sleep epochs. Wakefulness values 6.9 ± 5.0 (22), 49.3 ± 9.4 (22) for %R and %D,
respectively. All means were disambiguated from each other and from wakefulness (horizontal line) (P < 0.05, t test).

3. Results

3.1. Tonic EEG states during sleep

When the law-governed activity in overnight sleep EEGs was
examined using recurrence analysis at a resolution of 1 s, second-
by-second changes in the recurrence variables superimposed on a
cyclic background were seen (Fig. 2). In each subject, the complex-
ity of the EEG recorded during sleep decreased as evidenced by
increased values of %R and %D above the average level associated
with wakefulness (Fig. 2a and b). In contrast to the conventional
hypnogram (Fig. 2c), the recurrence hypnograms were rich in
dynamic detail and provided a continuous numerical marker for
sleep depth.

When the 1-s values of the variables were averaged epoch by
epoch, the recurrence representation of sleep EEGs from subjects
with and without sleep disorders exhibited the expected sleep
architectures (Figs. 3 and 4). If the recurrence variables reliably cap-
tured sleep-specific physiological information, we  would expect
that averaging epoch by epoch and coding each average value
by clinical sleep stage would reproduce the well-known macro-
architectures of normal and disordered sleep, and this result was
consistently observed. In Fig. 3, for example, the recurrence hypno-
grams consisted of 2 cycles of deep sleep in which epochs having

the highest recurrence values were usually scored as N3 sleep,
wake and N1 had the lowest recurrence values, and N2 epochs
were intermediate. For non-REM sleep, agreement between the
range of recurrence values and the independently scored sleep
stage was  consistently greater than 90%. REM sleep was  not dis-
ambiguated at this level of certainty, but in some cases the mean
values of the recurrence variables for REM were pair-wise dif-
ferent from all non-REM stages, and from wakefulness (P < 0.05)
(Fig. 3).

Similar results were found in clinically normal subjects (Fig. 4).
The macro-architecture of normal sleep consists of 4–5 cycles of
deep sleep, which was  what we observed when the epoch-averaged
values of the recurrence variables were color-coded by the sleep
stage that had been assigned by the PhysioNet experts (Fig. 4).
Again, agreement between the range of recurrence values and non-
REM stage was  consistently greater than 90% and, as was  observed
in the subjects with sleep disorders, the REM distributions of %R and
%D overlapped the corresponding distributions of stages N1 and N2.
In some cases the mean values of the recurrence variables of REM
from normal subjects were pair-wise different from all non-REM
stages, and from wakefulness (Fig. 4).

The relationship between the recurrence variables and sleep
stage can be clearly seen in Figs. 5 and 6 which show the results
for all epochs obtained from the seven subjects diagnosed with
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respectively. All means were disambiguated from each other and from wakefulness (horizontal line) (P < 0.05, t test).

sleep disorders. In each case when the recurrence variables were
averaged per epoch and sorted by stage, the values fell into ranges
that matched the sleep scoring, with epochs having higher values
corresponding to deeper sleep. In general, the values for the REM
epochs overlapped the values for stages N1 and/or N2, as expected.
Similar results (Figs. 5 and 6) were found in clinically normal sub-
jects (data not shown).

3.2. Tonic events during sleep

Arousals, sleep spindles, and K complexes, which are character-
istic phasic events seen in the sleep EEG, were readily detectable
by recurrence analysis (Fig. 7). Under the hypothesis that the recur-
rence variables also captured fine-grain structure in the sleep EEG,
we would expect to observe systematic changes in the recurrence
time series that corresponded to the phasic events. Their time scales
differed, necessitating the use of different analysis-window widths
and time shifts. The phasic events were detected using a range of
widths and shifts; typical results are shown in Fig. 7 (window of
60 ms,  shift of 2 ms).

3.3. Generalized arousal index

Different rates of abrupt EEG changes (objectively defined
arousals) occurred during different sleep stages, as evidenced by

the GAI (Fig. 8), thereby showing that the index was  sleep-stage
specific. The physiological relevance of the conventional arousal
index has been demonstrated in clinical studies, but the identifi-
cation of individual arousal events is based on a subjective rule.
In contrast, the GAI was defined objectively using the recurrence
variable %R. For each subject, the %R-based GAI decreased mono-
tonically with increasing sleep depth as assessed by sleep stage. As
expected, the GAI during REM sleep was comparable to the value
of the index in stages N1 and N2. The ability of the GAI to capture
sleep-stage-specific dynamical activity raised the possibility that
the index could be useful in basic research involving sleep phys-
iology and/or in clinical studies, but neither those issues nor the
relative sensitivity of a GAI based on other recurrence variables
were addressed here.

4. Discussion

4.1. Tonic background

We  adopted a nonlinear viewpoint regarding the perceptive,
integrative, and cognitive activities of the brain, and developed
a method that quantitated sleep as a dynamical process (Fig. 1).
The key element in the method was the development of RQA
for application to physiological signals (Zbilut and Webber Jr.,
2006). The method consisted of an algorithm that imported
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Fig. 5. Sleep-stage dependence of percent recurrence (%R) in seven subjects (S1–S7) diagnosed with sleep disorders. C4-M1 derivation. %R was computed over 1-s intervals,
averaged epoch by epoch, and the epochs were grouped by stage. Each point represents the average value of one epoch. For each box, the abscissa is the epoch number in
chronological order for the respective stage. The wake results (horizontal lines depicting the subjects’ average values) were used as a reference to characterize sleep depth.

sleep-related data obtained under standardized conditions using
commercially-available equipment and, over time scales relevant
to sleep, computed recurrence metrics for complexity of brain
electrical activity. The validity of the metrics was  established by
structuring the calculations in relation to standard sleep-staging

and showing that the metrics could be interpreted as a marker
for sleep depth at the time scale of a 30-s epoch. This result
implied the potential usefulness of the metrics for other applica-
tions where, presently, there is no gold-standard for comparison
(Figs. 2–4).
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4.2. Phasic events

The recurrence markers identified the common EEG phasic
events occurring during sleep in the sense that the mark-
ers changed whenever arousals, sleep spindles, or K complexes
occurred (Fig. 7). This result suggested that experimentally

useful objectively-defined functional EEG changes could be defined
even in the absence of predefined visual patterns (see GAI
below). We  did not address the possible use of markers as the
basis of an algorithmic system for automatically identifying the
phasic changes in the EEG. Our more limited purpose was to
further validate the markers by showing that they behaved as
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expected under the hypothesis that they were relevant to sleep
dynamics.

4.3. Potential applications of recurrence analysis

The two-process model of sleep regulation posits that sleep
propensity rises during waking and declines during sleep (pro-
cess S) (Borbély, 1998). The marker for S during sleep is the
occurrence of visually detected low-frequency EEG changes (delta
waves). Numerical calculation of the marker during wakefulness
is commonly based on spectral analysis (Rusterholz et al., 2010).
That choice, however, confounds distinctly different physiological
states. During delta-wave sleep the brain is a true low-frequency
oscillator (evidenced visually by the waves). In wakefulness, delta
is a mathematical abstraction, not an ontological oscillator. Recur-
rence analysis of the EEG offers the possibility of overcoming the
problem of combining actual and conceptual elements because it
characterizes the pattern in the EEG, not its spectral content.

Use of the GAI is another potential application of recurrence
analysis of the sleep EEG. An arousal is an abrupt change in the
EEG during sleep, as assessed by an expert scorer on the basis
of visual inspection of the EEG. Increased incidence of arousals
results in fragmented sleep leading to excessive daytime sleepiness
(EDS) (Bonnet et al., 2007). The GAI, an algorithmic generaliza-
tion of the arousal concept, may  lead to stronger associations with
EDS because the GAI detects all abrupt EEG changes (regardless of
whether they are visually recognizable). We  broadly validated the
%R-based GAI by showing that it was related to sleep depth. The
actual relationship between GAI and EDS or other sleep disorders
as well as the usefulness of other recurrence variables (Zbilut and
Webber Jr., 2006) remains to be studied.

4.4. Limitations

Sleep staging and the recognition of phasic events are non-
algorithmic tasks because they contain irreducible elements of
human judgment. Consequently the decisions have an intrinsic
inter-rater variability. Many computer-based algorithms have been
proposed as alternatives to human decision-making for deter-
mining the values of sleep variables, but without notable impact
because the computer can do no better than the expert, whose
judgment is the gold standard. Even if algorithmic performance
eventually matched human performance, a serious question would
remain regarding whether that were any real benefit, considering
the prolixity of the algorithms and the cost of the implementing
equipment. These comments apply equally to our method, per-
haps suggesting that it is primarily a tool for use in conjunction
with sleep staging rather than a potential replacement. We  are
also skeptical regarding the potential use of the method described
here as a basis for automatic detection of known phasic events.
We showed that recurrence analysis can detect the events, but we
did not address whether it does so more effectively than methods
previously proposed for that purpose.

4.5. Conclusion

Based on nonlinear analysis that quantified the recurrence prop-
erties of the EEG, we described a novel method for producing
dynamic markers, at any desired time scale, of the functional states
of the brain during sleep.
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