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Physical theory can explain all events known to occur in the inanimate world. In stark 
contrast, theory cannot explain or predict any behavior in even the simplest living 
organisms. The reason living systems are essentially unpredictable is that their 
interactions with factors in the environment are governed by nonlinear dynamical laws. 
When appropriate analytical methods are employed, it is possible to routinely observe the 
nonlinear determinism manifested by biological systems. 
The present fashion in biology, which is to pursue the study of mechanisms but ignore the 
dynamical laws that drive them, is inadequate for approaching many significant scientific 
problems. To solve them it will be necessary to think like a physicist, that is to think in 
terms of mathematical laws that govern the system under consideration. But it is not a 
physicist rooted in the traditions of the past that is needed, where essentially all the 
objects of study and analysis were linear systems governed by equations directly 
traceable to the deep laws of physics. Physics in the context of biology must be 
reconceptualized so that probabilistic explanations and short-term predictions based on 
heuristic laws are seen as the ultimate obtainable goal. 

 
 
1. Introduction 
 
Physical theory has undergone incredible development within the past 2 centuries, resulting in 
what arguably is mankind’s greatest intellectual achievement. Our present knowledge of the laws 
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governing gravity, electromagnetism, and atomic forces, and bow these laws function in different 
size and velocity domains is almost universally thought to be complete. We expect that any 
observation in the inanimate world can be explained by the equations of motion of the system 
from which the observation was drawn. 

No similar success has been achieved in understanding the animate world. The great 
advances in biology in the last half century have mostly involved discovery, rather than 
explanation. Thus, we now know about complex processes in the brain and immune systems, 
cytokine signaling networks, and the genetic basis of health and disease. Despite these 
discoveries, we have no understanding of biological activity in the sense that we can explain it 
deductively from the basic laws of nature. We cannot predict the future of any aspect of any 
biological system to a reliability that remotely parallels the reliability of the predictions that can 
be made about the behavior of nonliving things. Indeed, given all the great laws of physics, it is 
not even possible to predict that there is such a thing as life. 

One explanation for our present lack of understanding of how individual biological 
systems function in time is that our ignorance reflects a lack of attention to the problem, and that 
with a more concentrated effort we will achieve the ability to explain and predict the activities 
manifested by living systems. A problem with this viewpoint is that biology is clearly not 
developing in the direction of mathematization of observations and theories, which is a 
requirement for prediction as well as the best evidence of understanding. On the contrary, the 
great institutions where biology is taught now produce graduates who have essentially no 
training whatever in mathematics, and no inclination to think about biological systems in 
mathematical terms. The emphasis in these institutions is on observation and manipulation for 
purposes of elucidating mechanisms that mediate biological processes, rather than on 
understanding the dynamical laws that operate these mechanisms. 

Another possibility that could explain why we lack the ability to predict how living 
organisms will behave is that they are governed by as yet undiscovered laws. What makes this 
explanation particularly unappealing to me is that it assumes living organisms arc fundamentally 
different — not just more complex — than the rest of nature. and I cannot find any evidence to 
support that proposition. 

The explanation I propose is that, in many of their important manifestations, living 
organisms are similar to a kind of deterministic physical system that is unpredictable because it 
is nonlinear. In other words, because of the way living organisms are constructed, they exhibit 
behaviors that cannot be anticipated, at least when measured against the benchmark for predict- 
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ability furnished by linear systems. My purpose here is to present the evidence for this thesis, and 
to discuss its implications for the role of physics in biology. 

In the next section I distinguish linear and nonlinear systems and illustrate their key 
differences. It is an empirical question whether biological systems are like one or the other, and 
in the following section I discuss the conditions necessary to make such a judgment based on 
observation. I then show that, when the appropriate conditions are satisfied. biological systems 
can be recognized as fundamentally non linear in nature. 

Data does not speak for itself, but rather takes meaning from its context, especially 
including the model employed in its analysis. I present two cases illustrating how the arbitrary 
assumption that the biological system under study was linear in its ability to respond to a 
stimulus markedly altered the meaning of the data. The examples illustrate the necessity of 
avoiding the error of hypostatizing biological systems as linear systems. 

Finally, I offer a view regarding how the project of physics, which I take to be an effort to 
provide the best possible explanation of nature in natural terms, can be carried out most 
profitably in the domain of living systems. I think physics in the context of biology must be 
reconceptualized so that probabilistic explanations and short-term predictions based on heuristic 
laws are seen as the ultimate attainable goal. 

 

 

2. Physical Systems 

 

By a “linear system” I mean a system governed by linear differential equations. Linear systems 
obey the law of superposition, thereby ensuring that outputs will be proportional to inputs, and 
will be completely predictable. Essentially all man-made machines are linear systems for the 
obvious reason that there is no utility in an airplane, bicycle, cell telephone, automobile, or any 
other system that did not function the same way each time its initial conditions were duplicated. 
In this sense, linear systems display no novelty. This is a key point. and I want to illustrate its 
implications at the level of observation. 

A spring is a prototypical example of a linear system (Figure 1) The equation of motion of a 
mass, M, at the end of a spring having a constant k is: 

 

Mÿ + ky = 0. 

 

The general solution is 
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y = cl cos at + c2 sin at 

 

where k/M = a2. The arbitrary constants C1 and C2 can be determined from the initial conditions 
y(0), Y(0) . The solution reveals the fact that the spring vibrates forever with a simple harmonic 
motion whose period is T = 2π/a. 

 

 
 

Figure 1. Motion of a mass oscillating in a vacuum at the end of a spring. The mass (M) stretches 
the spring at equilibrium by a distance y0. If the mass is further displaced and released, its motion 
is determined by Hooke’s law and gravity. 

 
 

Even if we had no knowledge of gravity, Hooke’s law, or Newton’s law, we could still 
observe the behavior of a spring exhibiting the oscillatory motion depicted in Figure 1B and, on 
the basis of observation alone, predict the behavior of the system indefinitely far into the future. 

A “nonlinear” system is a system governed by nonlinear differential equations. Although 
man does not often build such systems, nature does — a premier example is the weather. A 
second key point is that observations of some nonlinear systems may not allow prediction of 
their future behavior. To see how this can be the case, consider the system of three ordinary 
differential equations derived by Lorenz to describe thermal conduction in the atmosphere [1]. 

 

ẋ = σ(y – x). 

ẏ = –xz + rx – y, 

ż = xy – bz 
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where x, y, and z are the system variables (two temperatures and a velocity) and σ, r, and b are 
system parameters. A particular solution for x in the so-called chaotic mode is shown in Figure 2. 
In contrast to the obvious pattern displayed by the linear system, the pattern of the chaotic 
system is completely inobvious in time; observations of a chaotic physical system, therefore, 
would not permit prediction of the system's future better than a guess. 

The nonlinear system is remarkably different from the linear system in another way — 
sensitivity to initial conditions. After about 10 seconds the perturbed and unperturbed systems 
(Figure 2) exhibit dramatically different behaviors even though the distinction that constituted 
the perturbation (10-6°C) is too small to resolve experimentally. 

 
 

 
 

Figure 2. Time series of one variable from the Lorenz system of equations (I). The thin 
line corresponds to an initial condition x(0) = 30.000000. The heavy line corresponds to 
the initial condition x(0) = 30.000001. The solutions separate after about 10 seconds 
(arrow). Solution method, fourth order Runge-Kutta algorithm, integration step = 0.01; 
σ = l6, r = 45.92, b = 4. 

 
 
 
 
3. Biological Systems 
 
By a “biological system” or a “living system” I mean a normally metabolizing unicellular or 
multicellular system that produces an output when subjected to an input. Probably the chief 
difference between physical and biological systems is the great complexity of the latter. The 
simplest object that could arguably be considered to be living is a virus whose genome codes for 
only 3 proteins [20]. Despite its simplicity when considered as a living system, the virus is 
infinitely more complex than any object studied by physicists in the laboratory. 
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By a “biological effect” I mean a relationship that can reasonably be modeled in terms of 
an input/output relationship (Figure 3). My thesis is that observed input/output relationships in 
biological systems are frequently nonlinear (sensory transduction may be a major class of 
exceptions). I will not discuss the character of the dynamical laws that govern the internal 
operation of a living system. I believe they also are nonlinear, but a discussion of the empirical 
evidence supporting this view would take me too far from my goal, which is to describe what I 
think is the proper role for physics in biology. 

 
 

 
 

Figure 3. A “biological effect” is defined as an output of a metabolically driven system subjected 
to an input. 

 
 
 

The great laws of physics are linear, and the myriad man-made systems that surround us 
have been designed to operate under linear principles. Appropriately, the methods used to 
analyze the output of these systems are linear. Thus, discrete outputs are typically analyzed by 
comparing their means, and time-series outputs are analyzed using analytical techniques such as 
the fast Fourier transform. It is easy to think of these methods as broadly applicable to any 
system, linear or nonlinear. I now want to show that this is not the case, and therefore that special 
methods are required to permit reliable observation of biological activity. 

Suppose we have 5 more-or-less identical living systems, say 5 laboratory rats, and the 
instantaneous values of a particular immune parameter are considered to be their outputs. The 
outputs are measured while the animals are in a normal (“control”) condition, following which 
they are exposed to a stimulus and then re-measured. We can distinguish 3 possible results 
(Figure 4). 

If the input-output relationships are linear, then the output observed from each animal 
will be consistent, changing by a roughly similar amount in each animal. 
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Figure 4. Possible responses in a group of 5 rats subjected to the same input. (A), output levels 
measured immediately prior to the input. (8), outputs measured immediately after the input. 

 
 

However, if the input-output relationship is governed by nonlinear dynamical law, as we 
have seen (Figure 2), the instantaneous output at any particular time is inconsistent in the sense 
that different animals not precisely in phase (which is obviously the situation for living systems) 
would be recorded as exhibiting increases or decreases, compared with the levels observed prior 
to application of the input. The experimental problem is to distinguish cases 2 and 3 which, on 
average, appear identical. 

One way in which a nonlinear effect might be recognized would be to evaluate the 
change in the variance of the data following application of the input. It is easy to see, for 
example, that the variance in case 2, Figure 4, exceeds that of the other cases. Consequently, a 
statistical test based on comparison of variance could evidence a nonlinear response, even in the 
absence of a change in the mean (means in cases 2 and 3 are identical by hypothesis). Note that if 
the means in cases 2 and 3 were each compared with the control, using the t test, for example, the 
deterministic effect depicted in case 2 would not be recognized. On the other hand, if the 
observations were as shown in case I, the underlying determinism could be recognized on the 
basis of the t test. These considerations show that analyzing a nonlinear system using a method 
suitable for analyzing a linear system can lead to a false conclusion that no effect occurred. 

Studies where the input was an electromagnetic field (EMF) well illustrate these points. 
For example, when I evaluated the effects of EMFs on body weight of animals, as reported in 
studies published between 1975–1995 [7], I found consistent, statistically significant effects on 
variance even though there was no consistent effect on the mean (Table 1) [5,12–14,17–19]. 
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Table 1. EMF effects on variance in body weight of mammals. The studies that used low-
frequency fields and presented sufficient data to permit an F test are included. The means ± SD are 
listed; the number of animals is given in parentheses. M, male; F, female. The F value and the 
corresponding probability are listed in the last two columns. The rejection region for F is 
P < 0.025, which corresponds to a probability of type-1 error of < 0.05 [7]. 

 
Ref. 
No. Species EMF 

Exposure 
Duration  Sex Body Weight (gms) F P 

    
Exp. 
no.  Control EMF   

19 Pigs 30 kV/m 
60 Hz 

Conception 
to birth 

1 M 536 ± 74.2 
(28) 

553 ± 157.5 
(56) 

4.50 <0.001 

     F 510 ± 91.7 
(29) 

518 ± 135.0 
(56) 

2.16 0.015 

    2 M 576 ± 129.2 
(29) 

532 ± 109.3 
(71) 

1.40 0.130 

     F 573 ± 123.8 
(29) 

*488 ± 118.0 
(71) 

1.10 0.36 

5 Monkeys 2 Gauss 1 year  M 2290 ± 510 
(14) 

*3060 ± 470 
(14) 

1.18 0.39 

  20 V/m 
72–80 Hz 

  F 1290 ± 700 
(16) 

1260 ± 920 
(16) 

1.73 0.15 

17 Rats 150 kV/m 
60 Hz 

Conception 
to 21 days 

 M 47 ± 6.7 
(56) 

45 ± 13.7 
(58) 

4.18 <0.001 

     F 43 ± 8.2 
(56) 

44 ± 12.9 
(58) 

2.47 <0.001 

18 Rats 80 kV/m 
60 Hz 

Conception 
to weaning 

1 M 66.5 ± 31.1 
(123) 

65.6 ± 35.4 
(148) 

1.29 0.070 

     F 60.8 ± 29.4 
(119) 

59.4 ± 25.8 
(126) 

1.30 0.075 

    2 M 45.1 ± 27.9 
(268) 

42.9 ± 40.0 
(220) 

2.06 <0.001 

     F 42.7 ± 20.6 
(295) 

42.7 ± 31.2 
(270) 

2.29 <0.001 
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    3 M 41.7 ± 16.4 
(188) 

41.9 ± 29.6 
(199) 

3.25 <0.001 

     F 38.9 ± 15.7 
(204) 

41.3 ± 28.8 
(208) 

3.36 <0.001 

14 Rats 0.1 kV/m 
45 Hz 

36 days  M 414 ± 17 
(47) 

*362 ± 9 
(47) 

3.57 <0.001 

12, 
13 

Rats 0.1 kV/m 
45 Hz 

28 days 1 M 398.5 ± 30.1 
(16) 

395.9 ± 40.6 
(16) 

1.82 0.13 

    2 M 349.1 ± 29.3 
(16) 

358.1 ± 25.5 
(16) 

1.32 0.30 

    3 M 398.6 ± 34.2 
(16) 

388.3 ± 21.3 
(16) 

2.58 0.038 

 
 
 

Perusal of the biological literature will reveal many instances in which the variance of the 
output of the biological system under study was affected by the input, but where that biological 
effect was not recognized by the investigators because a linear model was assumed. 

Studies involving the immune system provide another example. All reported studies of 
the effects of EMFs on the immune system had assumed the applicability of a linear model, 
resulting in inconsistent results that led to the overall conclusion that the immune system was not 
affected by fields [16]. We conducted a series of prospective studies to test the hypothesis that 
the response of the immune system of mice to EMFs was governed by nonlinear laws. 

It was necessary to develop a method of statistical analysis to test our hypothesis. For a 
nonlinear system, an effect caused by an input would not be observed by comparing means in 
large samples because oppositely-directed change would be averaged away (Figure 4B, case 2). 
Small samples might reveal nonlinear effects due to incomplete averaging, but statistical tests on 
small samples lack statistical power. To overcome this problem. we developed a novel statistical 
procedure for inferring the occurrence of nonlinear effects, based on the likelihood approach. 
This approach allows differences in means from replicate series of exposed and control groups to 
be combined to test an overall hypothesis, in our case that EMFs affected the immune system. 
The log-likelihood ratio of the t statistic for a t test between an exposed and control group is 

 
 
 
  



254 

	
  

 

𝑙 = 2𝑁 ln 1+ !
!!!!

𝑡! , 

 

where N is the number of animals in each group. The distribution of l is approximately chi-
square with I1 degree of freedom. For k pairs, the overall values of the test statistic, L, is 
𝐿 = 𝑙!!

! , which also approximately follows the chi-square distribution, with k degrees of 
freedom under the hypothesis of no treatment effect. Because L is sensitive to the difference 
between the exposed and control groups but not to the direction of the difference, L is suitable 
for testing a single overall hypothesis regarding occurrence of EMF-induced change in the k 
replicates. 

A result typical of those found in our immune studies is shown in Figure 5, which depicts 
the number of statistically significant effects on the immune system that were found following 
exposure to 60-Hz, 1 G, as evaluated on the basis of 𝐿 > 𝜒!,!.!"! , N = 5. Half of the immune 
parameters measured were significantly altered as a consequence of EMF exposure, which was 
far greater than the number that could be explained on the basis of chance. The alternative 
hypothesis of consistent change in the immune data (which would suggest the applicability of a 
linear model) was evaluated by combining the individual measurements in the 4 replicates prior 
to analysis (𝐿 > 𝜒!,!.!"! , with N=20) (equivalent to performing a t test on the combined data). In 
this case we observed only the number of significant changes expected on the basis of chance. 
Thus, it was possible to detect a nonlinear relationship between the input and the output of the 
biological system when it was modeled nonlinearly, but not when it was modeled linearly. 
Further details regarding Land the results obtained using it to examine the effects of EMFs on the 
immune system are presented elsewhere [8–11]. 

When it is possible to obtain time-series output data from a living system, the problem of 
discriminating between cases 2 and 3 (Figure 4) is simplified because of recent developments in 
nonlinear signal analysis. 
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Figure 5. Cumulative number of immune parameters (N) (out of 20) in male mice that were 
significantly affected by exposure to I G, 60Hz, as a function of the magnitude of the test statistic, 
assessed on the basis of whether 𝐿   > 𝜒!,!.!"!  and N=5. Region to the left of the dotted line 
indicates P < 0.05. Control experiments showed that, at most, one of the statistically significant 
changes could be attributed to chance. The immune parameters measured were: cellularity in 
spleen, thymus, and bone marrow; percent distribution of lymphocyte subpopulations in the spleen 
(CD45, IgM+, IgM+IgD–, IgM+IgD+, CD90+/CD3+, NK1.l), marrow (CD45, IgM+, IgM+IgD–, 
IgM+IgD+), and thymus (CD90+/CD3+, CD4+CD8–, , CD4-CD8+, CD4+CD8+); stimulation 
index; cytotoxic T lymphocyte assay; natural killer cell cytotoxic assay [10]. 

 
 
 

Using phase-space methods [6], time-series data that appears irregular in the time domain 
(Figure 2) and that appears to be colored noise in the frequency domain (Figure 6A) can exhibit a 
recognizable pattern when viewed in phase space Figure 6B). Such patterns can be visualized 
using recurrence plots (4] that can be quantitated using recurrence quantification analysis (RQA) 
[21–23]. 

We used nonlinear methods to analyze the electroencephalogram from rabbits exposed to 
EMFs (Figure 7). Typical results are shown in Figure 8, as assessed using two RQA quantifiers 
[12]. Using nonlinear methods we were able to prove the existence of a nonlinear relationship 
between an applied EMF an d a change in the brain's electrical activity which occurred in every 
animal studied. 
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Figure 6. Appearance of the solution of the Lorenz equation (Figure 2, IC = 30) in the frequency 
domain (A) and in phase space ( B). τ (time delay) = 0.1 sec; embedding dimension = 3. 
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Figure 7. Schematic representation of the experimental system used to expose rabbits to 2.5 G, 60 
Hz and assess the effect on the electroencephalogram. A computer-generated timing signal 
controlled switching of the stimulus. The timing signal was also fed into one of the channels of the 
EEG amplifier to facilitate identification of the exposed (E), sham (S), and control (C) epochs of 
the EEG in each trial (the ith trial is illustrated). The results of 50 trials were analyzed using the 
Wilcoxon signed-rank test. The location of the rabbit relative to the field-producing coils (shaded 
bars) is shown. 

 
 

 
 

Figure 8. Effect of 2.5 G, 60 Hz in 5 female rabbits, as assessed using two RQA quantifiers. For 
each rabbit and each quantifier, the difference between the exposed and control EEG epochs was 
evaluated using the Wilcoxon signed-rank test. The average values of the quantifiers (±SD) and 
the 95% confidence limits of the test metric are presented for each rabbit [12]. 
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Taken together these examples show that when appropriate analytical methods are 
employed it is possible to routinely observe nonlinear determinism in biological systems. 

 
 
4. Sensitivity to Initial Conditions 
 
I want to present two examples of how failing to recognize nonlinearity in the input-output 
relationships of biological systems can lead to an incorrect picture of how the living system 
responded to the input. 

Figure 9 depicts the results of 2 independent, controlled experiments involving exposure 
of mice to EMFs. Each experiment consisted of mating and rearing the mice while they were 
exposed to the field [15]. The offspring of the first generation (F1) were mated to produce a 
second generation (F2), and they were used to produce the final (F3) generation; for each 
generation, the mean body weights at maturity were compared with their controls. In one 
experiment the investigators found that the exposed mice in the first generation were statistically 
significantly lighter than the corresponding controls (about 8% on average). The difference was 
not statistically significant in the second generation, but in the third generation the difference 
was again statistically significant. 

 
 
 

 
 

Figure 9. Replicate experiments of the effect of EMF (100 kV/m, 60Hz) exposure on growth in 3 
generations of mice (F1–F3) [15]. ∆W, EMF-induced change in mean body weight relative to 
control. The data presented is for male mice. Similar results were found for the females. 
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In their second experiment, the investigators found that the second and third generations 
were statistically significantly heavier than the corresponding controls (Figure 9). 

One way to interpret these results (the proper way, I suggest) is to regard the basic 
relationship between the applied field and growth as being nonlinear in nature, and exhibiting 
sensitivity to initial conditions. In this view, unascertained (and hence uncontrolled) 
environmental conditions that differed between the two experiments caused the oppositely 
directed effects. This view leads to the conclusion that field exposure affects body weight but 
that the direction of the effect cannot be predicted. 

An alternative explanation (which was the position adopted by the investigators) is that 
only linear effects can occur and, since linear effects must be consistent, observation of apparent 
inconsistent effects in the two experiments indicated that there was no biological effect. 

Another example of how the failure to recognize nonlinearity leads to incorrect 
conclusions is provided by the so-called Henhouse studies, a group of identical experiments that 
were carried out in six different laboratories. In 1982, Delgado and colleague [3] had reported 
that EMFs caused skeletal abnormalities in chicken embryos. The report led to many follow-up 
studies, some of which confirmed the effect and some which did not. One proposed hypothesis to 
explain the apparent inconsistencies was to assume that they were due to differences in the 
exposure systems used in the studies, and that if everyone used exactly the same apparatus and 
procedure. consistent results would be obtained. The exposure systems were therefore rigorously 
standardized and similar experiments were carried out in three laboratories in the United States 
and three in Europe. Overall, the result was dismissed as negative [16], even though significantly 
more defective embryos were found among the EMF- exposed eggs in 2 of the 6 laboratories 
(Table 2) [2]. 

These two examples clearly revealed the role of sensitivity to initial conditions in altering 
the manifestation of the effect of the EMF. If neither group of investigators could eliminate the 
impact of sensitivity to initial conditions, despite great efforts and the expenditure of millions of 
dollars, it is safe to conclude that it cannot be done. As I showed in the previous section, 
sensitivity to initial conditions is a fundamental, defining property of nonlinear systems. 
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Table 2. Proportions of normal living embryos (mean ± SE). Approximately 100 embryos in the 
EMF and in the control group were studied at each laboratory. On the basis of ANOVA, there was 
a significant difference between the EMF and control groups, F(1,54)= 12.09, P = 0.001. 
*P < 0.05 [2]. 

 

Laboratory Location Sham-Exposed Exposed 

London, Ontario, Canada *0.936 ± 0.024 0.794 ± 0.024 

Umeă, Sweden 0.916 ± 0.026 0.874 ± 0.026 

Rockville, MD, USA *0.903 ± 0.030 0.778 ± 0.030 

Madrid, Spain 0.829 ± 0.041 0.796 ± 0.057 

Chapel Hill, NC, USA 0.784 ± 0.027 0.785 ± 0.035 

Las Vegas, NV, USA 0.730 ± 0.050 0.699 ± 0.044 
 
 
 
5. Role of Physics 

 

It is undoubtedly true that the deep laws of physics apply with full force and effect to both living 
and nonliving systems. But living systems are vastly more complex than any of the systems 
studied thus far by physicists in the laboratory. For this reason, the deep laws of physics are of 
almost no help in producing useful information concerning the future of specific biological 
systems. The situation is analogous to a game of chess in which one player knows the basic rules 
regarding the movement for each piece, but nothing about the strategy of the game. Even perfect 
knowledge of the basic rules will not save that player from disaster in the absence of heuristic 
knowledge regarding what kinds of moves make sense in particular situations. These heuristic 
rules are emergent properties of chess and do not exist at the same organizational level as the 
basic rules. It is this idea that I think is critical to an understanding of the role of physics in 
modem biology. The deep laws are not alien to biology, they are simply not sufficient to explain 
the observed behavior of any particular biological system. The best that can be done is to study 
the biological systems empirically with the aim of developing heuristic explanations. It is 
necessary to recognize that Laplacian determinism is a dream, unachievable in practice, and to 
settle for probabilistic knowledge that is better than a guess but far from the precision with which 
linear systems can be characterized. 

The present fashion in biology is to study mechanisms and eschew consideration of 
dynamical laws. I think this strategy is inadequate for approaching a whole range of biological 
problems that most people consider important and that are intrinsically dynamic, not structural.  
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How do factors that cause cancer or other disease work? What guides embryonic development? 
How is pain transmitted or blocked? When will strokes or heart attacks occur in particular 
individuals? What is life? 

To solve these and other important problems I think it will be necessary to think like a 
physicist, that is to think in terms of mathematical laws that govern the system under 
consideration. But it is not a physicist rooted in the traditions of the past that is needed, where 
essentially all the objects of study and analysis were linear systems governed by equations 
directly traceable to the laws of physics. Physics in the context of biology must be 
reconceptualized so that probabilistic explanations and short-term predictions are seen as the 
ultimate attainable goal. 
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